Abstract
In this paper we present a variational method for determining cartoon and texture components of the optical flow of a noisy image sequence. The method is realized by reformulating the optical flow problem first as a variational denoising problem for multi-channel data and then by applying decomposition methods. Thanks to the general formulation, several norms can be used for the decomposition. We study a decomposition for the optical flow into bounded variation and oscillating component in greater detail. Numerical examples demonstrate the capabilities of the proposed approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amann, H.: Compact embeddings of sobolev and besov spaces. Glasnik Matematicki 35(55), 161–177 (2000)
Aujol, J.-F., Aubert, G., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imaging and Vision 22(1), 71–88 (2005)
Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. International Journal of Computer Vision 63(1), 85–104 (2005)
Aujol, J.-F., Kang, S.-H.: Color image decomposition and restoration. Journal of Visual Communication and Image Representation 17(4), 916–928 (2006)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)
Bruhn, A.: Variational optic flow computation: Accurate modeling and efficient numerics. PhD thesis, Saarland University, Germany (2006)
Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)
Cohen, I.: Nonlinear variational method for optical flow computation. In: Proc. Eigth Scandinavian Conference on Image Analysis, Tromso, Norway, May 1993, vol. 1, pp. 523–530 (1993)
Deriche, R., Kornprobst, P., Aubert, G.: Optical flow estimation while preserving its discontinuities. In: Proc. Second Asian Conference on Computer Vision, Singapore, December 1995, vol. 2, pp. 290–295 (1995)
Fleet, D.J., Weiss, Y.: Optical Flow Estimation. In: Mathematical Models of Computer Vision: The Handbook, ch. 15, pp. 239–258. Springer, Heidelberg (2005)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (2004)
Kohlberger, T., Memin, E., Schnoerr, C.: Variational dense motion estimation using helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)
Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. In: The Fifteenth Dean Jaqueline B. Lewis Memorial Lectures (March 2001)
Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing 14(10), 1570–1582 (2005)
Vese, L.A., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing 19, 553–572 (2003)
Weickert, J., Bruhn, A., Brox, T., Papenberg, N.: A Survey on Variational Optic Flow Methods for Small Displacements. In: Mathematical Models for Registration and Applications to Medical Imaging, ch. 1, pp. 103–136. Springer, Heidelberg (2006)
Weickert, J., Schnoerr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. International Journal of Computer Vision 45(3), 245–264 (2001)
Weickert, J., Schnoerr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14(3), 245–255 (2001)
Yuan, J., Schnoerr, C., Steidl, G.: Simultaneous higher-order optical flow estimation and decomposition. SIAM J. Scientfic Computing 29(6), 2283–2304 (2007)
Yuan, J., Schnörr, C., Steidl, G., Becker, F.: A study of non-smooth convex flow decomposition. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 1–12. Springer, Heidelberg (2005)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-shape L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abhau, J., Belhachmi, Z., Scherzer, O. (2009). On a Decomposition Model for Optical Flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-03641-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03640-8
Online ISBN: 978-3-642-03641-5
eBook Packages: Computer ScienceComputer Science (R0)