Skip to main content

Computing the Local Continuity Order of Optical Flow Using Fractional Variational Method

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

Abstract

We introduce variational optical flow computation involving priors with fractional order differentiations. Fractional order differentiations are typical tools in signal processing and image analysis. The zero-crossing of a fractional order Laplacian yields better performance for edge detection than the zero-crossing of the usual Laplacian. The order of the differentiation of the prior controls the continuity class of the solution. Therefore, using the square norm of the fractional order differentiation of optical flow field as the prior, we develop a method to estimate the local continuity order of the optical flow field at each point. The method detects the optimal continuity order of optical flow and corresponding optical flow vector at each point. Numerical results show that the Horn-Schunck type prior involving the n + ε order differentiation for 0 < ε< 1 and an integer n is suitable for accurate optical flow computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)

    Article  Google Scholar 

  2. Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based texture extraction models. J. Visual Communication and Image Representation 18, 240–252 (2007)

    Article  Google Scholar 

  3. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. of Computational Physics 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis, J.A., Smith, D.A., McNamara, D.E., Cottrell, D.M., Campos, J.: Fractional derivatives-analysis and experimental implementation. Applied Optics 32, 5943–5948 (2001)

    Article  Google Scholar 

  6. Tseng, C.-C., Pei, S.-C., Hsia, S.-C.: Computation of fractional derivatives using Fourier transform and digital FIR differentiator. Signal Processing 80, 151–159 (2000)

    Article  MATH  Google Scholar 

  7. Zhang, J., Wei, Z.-H.: Fractional variational model and algorithm for image denoising. In: Proceedings of 4th International Conference on Natural Computation, vol. 5, pp. 524–528 (2008)

    Google Scholar 

  8. Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, Cn.: Fractional differentiation for edge detection. Signal Processing 83, 2421–2432 (2003)

    Article  MATH  Google Scholar 

  9. Sabatier, J., Agrawel, O.P., Tenreiro Machado, I.A.: Advances in Fractional Calculus: Theoretical Development and Applications in Physics and Engineering. Springer, Netherlands (2007)

    Book  Google Scholar 

  10. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory And Applications of Differentiation And Integration to Arbitrary Order (Dover Books on Mathematics). Dover (2004)

    Google Scholar 

  11. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, London (1999)

    MATH  Google Scholar 

  12. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  13. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computer Surveys 26, 433–467 (1995)

    Article  Google Scholar 

  14. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences. IEEE Trans. on PAMI 8, 565–593 (1986)

    Article  Google Scholar 

  15. Nagel, H.-H.: On the estimation of optical flow:Relations between different approaches and some new results. Artificial Intelligence 33, 299–324 (1987)

    Article  Google Scholar 

  16. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons and Fractals 31, 1248–1255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murio, D.A.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Problems in Science and Engineering 17, 229–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gorenfloa, R., Abdel-Rehimb, E.A.: Convergence of the Grünwald-Letnikov scheme for time-fractional diffusion. J. of Computational and Applied Mathematics 205, 871–881 (2007)

    Article  MATH  Google Scholar 

  19. Debbi. L., Explicit solutions of some fractional partial differential equations via stable subordinators. J. of Applied Mathematics and Stochastic Analysis, Article ID 93502, 1–18 (2006)

    Google Scholar 

  20. Debbi, L.: On some properties of a high order fractional differential operator which is not in general selfadjoint. Applied Mathematical Sciences 1, 1325–1339 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A: Math. Gen. 38, L679–L684 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duits, R., Felsberg, M., Florack, L.M.J., Platel, B.: α scale spaces on a bounded domain. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 502–518. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kashu, K., Kameda, Y., Imiya, A., Sakai, T., Mochizuki, Y. (2009). Computing the Local Continuity Order of Optical Flow Using Fractional Variational Method. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics