Abstract
Pairwise data clustering techniques are gaining increasing popularity over traditional, feature-based central grouping techniques. These approaches have proved very powerful when applied to image-segmentation problems. However, they are mainly focused on extracting flat partitions of the data, thus missing out on the advantages of the inclusion constraints typical of hierarchical coarse-to-fine segmentations approaches very common when working directly on the image lattice. In this paper we present a pairwise hierarchical segmentation approach based on dominant sets [12] where an anisotropic diffusion kernel allows for a scale variation for the extraction of the segments, thus enforcing separations on strong boundaries at a high level of the hierarchy. Experimental results on the standard Berkeley database [9] show the effectiveness of the approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, F., Hancock, E.R.: Graph Spectral Image Smoothing. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 191–203. Springer, Heidelberg (2007)
Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans. Pattern Anal. Machine Intell. 25(4), 513–518 (2003)
Fowlkes, C., Belongie, S., Chun, F., Malik, J.: Spectral grouping using the Nyström method. IEEE Trans. Pattern Anal. Machine Intell. 26, 214–225 (2004)
Grady, L.: Random Walks for Image Segmentation. IEEE Trans. on Pattern Anal. and Machine Intell. 28(11), 1768–1783 (2006)
Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. Pattern Anal. Machine Intell. 19, 1–14 (1997)
Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH 2000: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 279–286. ACM Press, New York (2000)
Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of the 19th Intl. Conf. on Machine Learning (ICML) (2002)
Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. of Computer Vision 43(1), 7–27 (2001)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)
Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering. In: 9th IEEE International Conference on Computer Vision – ICCV 2003, vol. I, pp. 362–369. IEEE Computer Society Press, Los Alamitos (2003)
Pavan, M., Pelillo, M.: Effcient out-of-sample extension of dominant-set clusters. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1057–1064. MIT Press, Cambridge (2005)
Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Machine Intell. 29(1), 167–172 (2007)
Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of nonmetric proximity data. IEEE Trans. Pattern Anal. Machine Intell. 25, 1540–1551 (2003)
Sarkar, S., Boyer, K.: Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding 71, 110–136 (1998)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 22, 888–905 (2000)
Torsello, A., Di Ges, M., Pelillo, M.: Integrating Boundary Information in Pairwise Segmentation. In: International Conference on Image Analysis and Processing - ICIAP 2007, pp. 23–28. IEEE Computer Society, Los Alamitos (2007)
Torsello, A., Pavan, M., Pelillo, M.: Spatio-temporal segmentation using dominant sets. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 301–315. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Torsello, A., Pelillo, M. (2009). Hierarchical Pairwise Segmentation Using Dominant Sets and Anisotropic Diffusion Kernels. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-03641-5_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03640-8
Online ISBN: 978-3-642-03641-5
eBook Packages: Computer ScienceComputer Science (R0)