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Abstract. Pairwise data clustering techniques are gaining increasing
popularity over traditional, feature-based central grouping techniques.
These approaches have proved very powerful when applied to image-
segmentation problems. However, they are mainly focused on extracting
flat partitions of the data, thus missing out on the advantages of the
inclusion constraints typical of hierarchical coarse-to-fine segmentations
approaches very common when working directly on the image lattice.
In this paper we present a pairwise hierarchical segmentation approach
based on dominant sets [I2] where an anisotropic diffusion kernel allows
for a scale variation for the extraction of the segments, thus enforcing
separations on strong boundaries at a high level of the hierarchy. Exper-
imental results on the standard Berkeley database [9] show the effective-
ness of the approach.

1 Introduction

Proximity-based, or pairwise, data clustering techniques are gaining increas-
ing popularity over traditional central grouping techniques, which are centered
around the notion of “feature” (see, e.g., [BIT4ATE/T3]). In many application do-
mains, in fact, the objects to be clustered are not naturally representable in terms
of a vector of features. On the other hand, quite often it is possible to obtain
a measure of the similarity/dissimilarity between objects. Although such a rep-
resentation lacks geometric notions such as scatter and centroid, it is attractive
as similarity information arising from sources of very different nature can be in-
corporated very easily, often not requiring more than adding together distances
or multiplying similarities calculated from different sources. In contrast, inte-
grating information of different nature within the central clustering framework
requires an integrated feature model capable of simultaneously characterizing all
information at the feature level.

These approaches have proven very powerful when applied to image segmen-
tation problems [I5I8J5)2]. Here, the possibility of easily integrating different
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sources of information has been used to incorporate color, texture, and proxim-
ity information between pair of pixels. Conversely, feature based segmentation
algorithms must explicitly integrate all types of information into a single geo-
metrical model which requires a stronger characterization of the geometry of the
image.

Despite the promise of ease of integration of inhomogeneous information, most
actual implementations of pairwise segmentation only integrate local appearance
based information, with color- and texture-based similarities taking the lion’s
share over all pairwise measures found in the literature. With few exceptions,
little work has been done to integrate locality and boundary information in a
pairwise setting. Among these we note Malik and coworkers’ proposal to incor-
porate boundary information in the normalized-cut framework by looking for an
intervening contour [§]. However, their approach only looks for detected edges
in the straight line joining two pixels; hence, it is strongly dependant on the
quality of the edge extractor and tends to separate pixels belonging to a single
region if this is not convex. The normalized cut framework is relatively forgiving
about this problem, but it is particularly severe when using pairwise clustering
algorithms that favor “compact” globular clusters such as the dominant sets
framework [12]. Furthermore, intervening contour information alone is not able
to separate regions with fuzzy or unclear boundaries such as regions delimited by
relatively smooth gradients. An alternative is to use the minimal boundary sep-
aration along all possible paths [16], however the selection of the optimal path
renders this approach not robust with respect to the misdetection of a single
boundary point. A more robust path-based segmentation can be achieved using
random walks on the image lattice. For example, Grady uses random walks to
extract a semi-supervised segmentation [4] where a pixel belongs to the class of
whose label is expected to find first on a random walk.

Further, pairwise segmentation algorithms are generally concerned with flat
partitions, thus missing out on the advantages of the inclusion constraints typ-
ical of hierarchical coarse-to-fine segmentations approaches very common when
working directly on the image lattice.

In this paper, we propose a coarse-to-fine segmentation algorithm based on
a hierarchical variant of the dominant sets framework [10]. Here, however, the
regularizer term is substituted with a heat diffusion kernel [7], which enforces
locality and boundary separation based on a limited time random walk on the
image lattice. At the beginning of the diffusion process the effects are local and
hence the long-range similarity is dominated by the color and texture appear-
ance, while as the time increases the range of the kernel expands thus enforcing
a coarser segmentation. To this end we start by segmenting at a high time value,
and then we iteratively reduce the time to obtain finer-grain separations. The
anisotropic diffusion properties of the heat kernel have been used in the com-
puter graphics and vision communities to perform controlled smoothing [Gl/T].
Here, however, we are using it to define an explicit scale space on which to base
a recursive hierarchical partitioning scheme.
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2 Hierarchical Dominant Sets

The dominant set framework [12] is a pairwise clustering approach based on a
recursive characterization of the weight wg (i) of element ¢ with respect to a
set S of elements, and characterizes a group as a dominant set, i.e., a set that
satisfies:

1. wg (i) >0, for alli € S

2. Wsugy (1) <0, for all i ¢ S.

These conditions correspond to the two main properties of a cluster: the first re-
gards internal homogeneity, whereas the second regards external inhomogeneity.

The main result presented in [12] provides a one-to-one relation between dom-
inant sets and strict local maximizers of the following quadratic program

maximize x'Ax
subject to x € A

(1)
where A = (a;;) is the matrix of similarities of the n elements to be grouped,
A={xeR" : z;>0foralli=1,...,nand I'x =1}

is the standard simplex of IR", and 1 is a vector of appropriate length consisting
of unit entries.

Specifically, in [I2] it is proven that if x is a strict local solution of program ()
then its support S = o(x) is a dominant set. Here, the support of a vector x € A
is the set of indices corresponding to its positive components. The local maxima
of (@) is found using the replicator equations, a dynamical systems mutuated
from game-theory. The approach has proven to be a very effective and robust
pairwise clustering approach that has in its speed one of its major selling points.

In [T0] a hierarchical approach was presented by taking into consideration the
regularized quadratic program

maximize x'(A —al)x
subject to x € A

2)

where « is a scale parameter that defines the hierarchy. In [10] was shown that
for sufficiently large values of « all elements where clustered into a single group
and a recursive divisive algorithm was applied to the data as o was reduced.
However, no indication of how to select the relevant values of o was provided.

3 Anisotropic Diffusion Kernel

Let M = (Vas, Enr) be the regular mesh defined over the image by connecting
each pixel to its 4-neighbors. Further, let v : Vay x V3y — IRt be an edge weight
function which reflects how similar two neighboring pixels are. In our boundary-
based segmentation approach we set
— TV if (i,j) € B
v(zyj):{e R
0 otherwise,
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original t=1 t=125 t=250 t=375 t=500 t=625 t=750

original t=1 t=500 t=1000 t=1500 t=2000 t=2500 t=3000

Fig. 1. Location distribution of a walker at time ¢. the black dot marks the starting
position.

where VI; is the image gradient at pixel i. We define M = (m;;) as the weighted
adjacency matrix of M, where we set m;; = (3, §).

An anisotropic diffusion on M is a lazy random walk from a pixel in the
image lattice to other pixels along the mesh connections, where the transition
probabilities are proportional to the value of the edge weight function . The
walk is lazy as at each time step the walker has a non-null probability 1/Z; of
remaining at location ¢ and a probability m;;/Z; of moving to location j, where
Zi=14+%" ;M is a normalizing factor. The use of a lazy walk forces the walker
to diffuse rapidly on flat image regions, when Z; is high, while slowing down
when there is a complex edge structure around 4, i.e., when Z; is close to 1.

The expected position at time ¢ of a random walker starting from position 4
is governed by the heat diffusion kernel e=**, where £ is the Laplacian of M,
with £ = D — M where D is the diagonal matrix with elements d;; = > ;M-
At t = 0, the diffusion kernel is an identity matrix; as ¢ increases the kernel
assigns non-zero values to elements in the vicinity of position ¢ spreading more
rapidly along flat locations and stopping on boundaries, while as ¢ becomes very
large the support of the kernel is very diffused and far-reaching. Figure [I] shows
two images and the location probability of a walker starting on the pixel marked
with the black dot. As it can be seen, for small times the support is mostly
restricted to a local segment, bound by strong boundaries in the image, while as
time increases the support becomes more diffused.

4 Diffusion Regularizers

In the definition of our hierarchical coarse-to-fine segmentation approach we
substitute the identity matrix I in the regularizer term of program (2)) with the
kernel I — e **, obtaining the following regularized quadratic program

maximize fi(x) =x [A— o (I —e *)]|x
subject to x € A

3)
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where for all £ > 0 ay > 0 is a monotonically increasing function with ap = 0.
Note that in the large time limit this regularizer term becomes equivalent to
the one used in [I0]. In fact, as program () is invariant to constant shifts in
the matrix A, subtracting the regularizing term «/ is equivalent to subtracting
a(I —11'). Moreover, we have

lim (I —e *")=1-11
t—o0
as L is positive semidefinite with the only null eigenvalue corresponding to the
eigenvector 1. Further, for times close to 0, the effect of the kernel vanishes as
lim (I —e *") =0.
Jag (1=
Intuitively we are substituting a regularizing term that increases the support
equivalently to all elements, with one that increases the support to neighboring
pixels first.
We can now prove that the time parameter indeed produces a scale-space as
cluster hierarchy collapses to the full image for sufficiently large times.

Proposition 1. Let A1(A), A\2(A4),..., \(A) represent the largest, second

A1 (A .
1,e—iif)1<£>t’ then f; is

a strictly concave function in A. Further, if ay > 1_;);1n(:41)< £y the only solution

of (@) belongs to the interior of A.

largest,. .., smallest eigenvalue of matriz A. If ay >

Proof. Note that £1 = 0, which implies for all ¢+ e=#**1 = 1. Further, all other
eigenvalues are in the open interval (0, 1). The function f; is strictly concave in A
if for all y € R™ with y'1 =0, we have y' [A — a; (I — e™*")] y < 0. However,

Y (A o (I - e_u)) y <M(A)y'y — o (y’y - y/e_uy> <
MYy —ar vy = e (%) ¥'y) =¥y (M) —ai (1= 91 <o,
(4)

Since f; is strictly concave in A, program (@), which is a concave with convex
constraints, has a unique solution. To prove the second result, suppose by con-
traddiction that this solution x lies on the boundary of A, then we have z; =0
for some index . There is a unique y € IR" with y’1 = 0 such that x = TlLl +y.
Further, since by hypothesis we have z; = 0, then y'y > n(nlfl). With this we
have

1
x'Ax — oy (x’x — x’e_ax) <MA)YyYy+ ) -yYyo (1 — e_)‘"—l(ﬁ)t) —
n

/ A 1 1 1 —An—1(L)t
y y + Q e n—1 <
()\1( ) ( nyIY) ! ( )

y'y (/\1(A)n - (1 - e‘“*“”)) <0.
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Recall that a point x € A satisfies the Karush-Kuhn-Tucker (KKT) conditions
for problem (@) if

(Ax); — oy (a:i — e*ﬁx\ﬁ x'Ax — oy (x’x —x'e Lix
if i € o(x) .
(Ax); + oy (e_ax)i <x'Ax — oy (x’x - x’e_ax) (5)
otherwise.

Then, we have
(Ax); + ay (eiﬁtx)i <x'Ax — oy (x'x _ x’efux) )

However, this is impossible since (Ax); + a4 (e*ux)i >0 and
2/ Ax — oy (x'x — x'e #'x) < 0, thus proving the proposition.

4.1 Selecting Relevant Levels

One of the questions left open in [I0] is how to select the values of the regular-
izer parameter that induce relevant partitions. Indeed, as the scale parameter «
varies continuously from its maximum value down to 0, we expect the size of the
extracted segments to vary almost as smoothly. Here we adopt an entropy shed-
ding approach to the selection of the relevant levels of the hierarchy: the value
of x € A that maximizes (2)) can be considered as a probability distribution
whose entropy is a measure of the size and cohesiveness of the cluster. As the
parameter « is decreased we expect the first extracted cluster to steadily become
less cohesive, eventually losing a few peripheral elements, until we reach a point
where there is a substantial modification in the cluster structure as the current
group gets split into multiple parts, thus producing a jump in the entropy value.

Figure [2] shows an example where a set of points generated from three bi-
variate Gaussian distribution are clustered using the original hierarchical formu-
lation ([2]). The left image shows the point distribution, while the plot on the right

. , . . . . .
| 20 40 60 80 100 120 140

Fig. 2. Entropy value of the distribution associated with first cluster as a function of
the regularizing parameter «
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show the entropy for different values of a. there are three well defined plateaus
corresponding to a single cluster encompassing all the data (a > 115), a cluster
without the points in the rightmost distribution which is furthest apart from the
other (75 < o < 100), and cluster encompassing only one of the three point sets
(20 < a < 55). after that even smaller subsets are extracted.

Accordingly, we start the clustering procedure at a sufficiently high time to
obtain a single cluster and we reduce the time until we reach the next entropy
plateau. In our implementation we use an exponential schedule for the reduction
of the time parameter ¢, i.e., we multiply ¢ by a constant factor ¢, = 0.8. once
a new plateau is reached, we partition the data and continue recursively on each
cluster, until we reach the final partition at ¢ = 0.

4.2 Subsampling

Despite their many advantages, pairwise clustering approaches are computation-
ally very demanding due to their scaling behavior with the quantity of data. On
a dataset containing N examples, the number of potential comparisons scales
with O(N?), thereby rendering the approaches unfeasible for problems involving
very large data sets as is the case of pixel based segmentation of even moderately
large images. It is therefore of primary importance to develop strategies to reduce
the number of comparisons required by subsampling the data and extending the
grouping to out-of-sample points after the clustering process has taken place.

In [IT] was proposed a subsampling approach for the dominant sets framework
and a more efficient extension scheme was proposed in [I7] in order to adapt
the famework to spatio-temporal segmentation. The approach takes an element
of a cluster S to act as a cluster centroid, namely it takes the element ¢ which
maximizes the weight wg (i) with respect to the cluster S. This way, the similarity
of an out-of-sample point j to a cluster S is simply the similarity to its centroid
cs. The first step of the out-of-sample segmentation is to extract the clusters
from the sampled points. With the initial segmentation to hand, each pixel is
then assigned to the closest cluster.

While the out of sampling approach certainly helps with the computation of
the cluster structure at the various levels, it cannot be used to reduce the com-
plexity of the kernel computation, which requires the computation of the full set
of eigenvalues and eigenvectors of the Laplacian matrix £. Further, note that
subsampling techniques require a connection to all the other nodes and while this
is not a problem for the matrix A which has connection at all ranges, is unusable
with the Laplacian, which has only local connections and subsampling it would
break the mesh connectivity structure and severely modify the eigenspaces. How-
ever, we can use the locality of the heat kernel to our advantage, as we can
down-sample he original boundary information to obtain a smaller mesh from
which we can compute the eigenvectors which can then just be up-scaled to the
original size with minimal loss of information. Hence, in this work we adopted
a mixed strategy for data reduction: we down-sampled the mesh by a factor of
8 in each direction and computed the 10 smallest eigenvectors of £, which are
then up-scaled to reconstruct a least-squares approximation of the heat kernel.
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With the full up-scaled kernel to hand, we can use the subsampling procedure
described in [17] both on the similarity matrix A and on the kernel I — e~**.

5 Experimental Results

In order to assess the performance of the proposed kernel-based coarse-to-fine
hierarchical segmentation approach, we tested it on the Berkeley database [9]
using only color information for the similarity matrix A. Clearly, the final goal
is to incorporate more descriptive pairwise similarities, but it would be hard
to separate the effect of the diffusion kernel from that of other boundary-based
information. In all the experiments the similarity between two pixels ¢ and j is
taken to be a;; = efi'd(i’jf/"a where d(i, 7) is the perceptual distance between
the colors of pixels i and j computed as the Euclidean distance on the CIE Luv
color space.

Figures [ and @ show two images and the computed segment hierarchies. On
the top left corner of each group we see the original images, while the other im-
ages display the segmentation hierarchy. For each segmented image we show the
clusters extracted at the next level, where all pixels belonging to the same clus-
ter are drawn using the average color of the cluster and pixels that have already
being eliminated are drawn in black. the segmented image is then linked to the
images showing the lower level segmentations. Note how the first separation in
the image in Figure Blis a major figure ground separation with all the details on
the camel clustered together. It is only at lower levels of the hierarchy that the
details form separate clusters. Further, note how in the image in Figure @l the

Fig. 3. Segmentation hierarchies extracted from the camel image
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Fig. 4. Segmentation hierarchies extracted from the fireman image

Precision

—o— F=0.53 HDS

——— F=0.49 Nystrom
—+—F=0.49 DS

0 0.25 0.5 0.75 1
Recall

Fig. 5. Precision/Recall on the Berkeley database for our hierarchical method (HDS),

the flat dominant set framework (DS) and the Nystrom extension (Nystrom)

first partition separates the major image components, while at a lower scale the
highlights get separated from the fireman’s suit and helmet.
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Next, for a more quantitative analysis, we computed the Precision and Recall
for boundary detection on the full Berkeley database. The analysis was per-
formed for our hierarchical approach, the original dominant sets framework with
out-of-sample extension, and the Nystrém extension [3], an out-of-sample gen-
eralization of normalized cut [I5]. All pairwise segmentation approaches were
based on the same color similarity matrix.

Figure [l shows the resulting Precision/Recall curves. We can see that the
original dominant sets and the Nystrom extension performed almost identically,
while our proposed approach shows a marginal but very clear advantage. It
is worth noting that the standard precision recall curve does not evaluate the
quality of the segment hierarchies, but is only concerned with a single flat seg-
mentation. For this reason on our algorithm only the final partition, the one
at t = 0, was used for the boundary extraction. Hence, the advantage over the
standard dominant sets framework is due to the coarse-to-fine nature of the hier-
archical divisive algorithm used, which extracts stronger and clearer boundaries
first, thus reducing noise and detection errors around clear separations.

6 Conclusions

In this paper we have presented a coarse-to-fine hierarchical segmentation ap-
proach which uses an anisotropic diffusion kernel to generate the levels of the
hierarchy. The approach is a generalization of the hierarchical dominant sets
framework presented in [I0] with the addition of a heat kernel-based regularizer
term that enforces locality and boundary separation. We have proven that the
term does indeed generate a scale-space and proposed an entropy measure to
select the relevant scales. Further, we have proposed a mixed strategy for out-
of-sample extension in the presence of the diffusion kernels. We compared the
performance of the approach to the original flat dominant sets framework and to
the Nystrom extension applied to normalized cut, showing that our coarse-to-fine
approach outperforms both on the standard Berkeley database.
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