Skip to main content

Hierarchical Pairwise Segmentation Using Dominant Sets and Anisotropic Diffusion Kernels

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5681))

  • 1390 Accesses

Abstract

Pairwise data clustering techniques are gaining increasing popularity over traditional, feature-based central grouping techniques. These approaches have proved very powerful when applied to image-segmentation problems. However, they are mainly focused on extracting flat partitions of the data, thus missing out on the advantages of the inclusion constraints typical of hierarchical coarse-to-fine segmentations approaches very common when working directly on the image lattice. In this paper we present a pairwise hierarchical segmentation approach based on dominant sets [12] where an anisotropic diffusion kernel allows for a scale variation for the extraction of the segments, thus enforcing separations on strong boundaries at a high level of the hierarchy. Experimental results on the standard Berkeley database [9] show the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, F., Hancock, E.R.: Graph Spectral Image Smoothing. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 191–203. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans. Pattern Anal. Machine Intell. 25(4), 513–518 (2003)

    Article  Google Scholar 

  3. Fowlkes, C., Belongie, S., Chun, F., Malik, J.: Spectral grouping using the Nyström method. IEEE Trans. Pattern Anal. Machine Intell. 26, 214–225 (2004)

    Article  Google Scholar 

  4. Grady, L.: Random Walks for Image Segmentation. IEEE Trans. on Pattern Anal. and Machine Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  5. Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. Pattern Anal. Machine Intell. 19, 1–14 (1997)

    Article  Google Scholar 

  6. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH 2000: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 279–286. ACM Press, New York (2000)

    Google Scholar 

  7. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of the 19th Intl. Conf. on Machine Learning (ICML) (2002)

    Google Scholar 

  8. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. of Computer Vision 43(1), 7–27 (2001)

    Article  MATH  Google Scholar 

  9. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  10. Pavan, M., Pelillo, M.: Dominant sets and hierarchical clustering. In: 9th IEEE International Conference on Computer Vision – ICCV 2003, vol. I, pp. 362–369. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  11. Pavan, M., Pelillo, M.: Effcient out-of-sample extension of dominant-set clusters. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1057–1064. MIT Press, Cambridge (2005)

    Google Scholar 

  12. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Machine Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  13. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of nonmetric proximity data. IEEE Trans. Pattern Anal. Machine Intell. 25, 1540–1551 (2003)

    Article  Google Scholar 

  14. Sarkar, S., Boyer, K.: Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding 71, 110–136 (1998)

    Article  Google Scholar 

  15. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  16. Torsello, A., Di Ges, M., Pelillo, M.: Integrating Boundary Information in Pairwise Segmentation. In: International Conference on Image Analysis and Processing - ICIAP 2007, pp. 23–28. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  17. Torsello, A., Pavan, M., Pelillo, M.: Spatio-temporal segmentation using dominant sets. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 301–315. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torsello, A., Pelillo, M. (2009). Hierarchical Pairwise Segmentation Using Dominant Sets and Anisotropic Diffusion Kernels. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03641-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03640-8

  • Online ISBN: 978-3-642-03641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics