Abstract
Determining Euclidean transformations for the robust registration of noisy unstructured point sets is a key problem of model-based computer vision and numerous industrial applications. Key issues include accuracy of the registration, robustness with respect to outliers and initialization, and computational speed.
In this paper, we consider objective functions for robust point registration without correspondence. We devise a numerical algorithm that fully exploits the intrinsic manifold geometry of the underlying Special Euclidean Group SE(3) in order to efficiently determine a local optimum. This leads to a quadratic convergence rate that compensates the moderately increased computational costs per iteration. Exhaustive numerical experiments demonstrate that our approach exhibits significantly enlarged domains of attraction to the correct registration. Accordingly, our approach outperforms a range of state-of-the-art methods in terms of robustness against initialization while being comparable with respect to registration accuracy and speed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shi, Q., Xi, N., Chen, Y., Sheng, W.: Registration of Point Clouds for 3D Shape Inspection. In: Int. Conf. Intelligent Robots and Systems (2006)
Zhu, L., Barhak, J., Shrivatsan, V., Katz, R.: Efficient Registration for Precision Inspection of Free-Form Surfaces. Int. J. Adv. Manuf. Technol. 32, 505–515 (2007)
Krishnan, S., Lee, P.Y., Moore, J.B., Venkatasubramanian, S.: Optimisation-on-a-Manifold for Global Registration of Multiple 3D Point Sets. Int. J. Intell. Syst. Technol. Appl. 3(3/4), 319–340 (2007)
Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s Method on Riemannian Manifolds and a Geometric Model for the Human Spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)
Frome, A., Huber, D., Kolluri, R., Bülow, T.: Recognizing Objects in Range Data using Regional Point Descriptors. In: Proc. Europ. Conf. Comp. Vision. (2004)
Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes. Int. J. Computer Vision 67(3), 277–296 (2006)
Rodgers, J., Anguelov, D., Pang, H.C., Koller, D.: Object Pose Detection in Range Scan Data. In: Proc. Conf. Comp. Vision Pattern Recogn. (2006)
Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Rangarajan, A., Chui, H., Bookstein, F.L.: The Softassign Procrustes Matching Algorithm. In: Proc. Int. Conf. Inf. Process. Med. Imaging (1997)
Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP Algorithm. In: Proc. Int. Conf. 3D Digital Imaging and Modeling (2001)
Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of Point Cloud Data from a Geometric Optimization Perspective. In: Proc. Sym. Geom. Process. (2004)
Tsin, Y., Kanade, T.: A Correlation-Based Approach to Robust Point Set Registration. In: Proc. Europ. Conf. Comp.Vision (2004)
Jian, B., Vemuri, B.C.: A Robust Algorithm for Point Set Registration Using Mixture of Gaussians. In: Proc. Int. Conf. Comp. Vision (2005)
Wang, F., Vemuri, B.C., Rangarajan, A., Schmalfuss, I.M., Eisenschenk, S.J.: Simultaneous Nonrigid Registration of Multiple Point Sets and Atlas Construction. In: Proc. Europ. Conf. Comp. Vision (2006)
Edelman, A., Arias, T.A., Smith, S.T.: The Geometry of Algorithms with Orthogonality Constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1999)
Li, H., Hartley, R.: The 3D-3D Registration Problem Revisited. In: Proc. Int. Conf. Comp. Vision (2007)
Taylor, C.J., Kriegman, D.J.: Minimization on the Lie Group SO(3) and Related Manifolds. Technical Report 9405, Center for Systems Sciene, Dept. of Electrical Engineering, Yale University (1994)
Teboulle, M.: A Unified Continuous Optimization Framework for Center-Based Clustering Methods. J. Mach. Learn. Res. 8, 65–102 (2007)
Matsushima, Y.: Differentiable Manifolds. Marcel Dekker, Inc., New York (1972)
do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Breitenreicher, D., Schnörr, C. (2009). Intrinsic Second-Order Geometric Optimization for Robust Point Set Registration without Correspondence. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-03641-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03640-8
Online ISBN: 978-3-642-03641-5
eBook Packages: Computer ScienceComputer Science (R0)