Skip to main content

Optimality Condition and Mixed Duality for Interval-Valued Optimization

  • Conference paper
Fuzzy Information and Engineering Volume 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 62))

Abstract

In this paper, the optimality sufficient condition and a mixed dual model for nonlinear interval-valued optimization problem (IVP) are established. The mixed dual model unifies the Mond-Weir dual model and Wolfe dual model for interval-valued optimization. Weak and strong duality theorems in (IVP) based on the formulation of the mixed primal and dual problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bector, C.R., Chandra, S.: On duality in linear programming under fuzzy environment. Fuzzy Sets and Systems 125, 123–198, 317–325

    Google Scholar 

  2. Wu, H.C.: Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optimization and Decision Making 2, 61–73 (2003)

    Article  MathSciNet  Google Scholar 

  3. Wu, H.C.: Duality theory in fuzzy optimization problems. Fuzzy Optimization and Decision Making 3, 345–365 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wu, H.C.: Duality theory in fuzzy optimization problems formulated by the Wolfes primal and dual pair. Fuzzy Optim. Decis. Making 6, 179–198 (2007)

    Article  MATH  Google Scholar 

  5. Wu, H.C.: Wolfe Duality for Interval-Valued Optimization. Journal of Optimization Theory and Applications (2008)

    Google Scholar 

  6. Bector, C.R., Chandra, S., Abha: On mixed duality in mathematical programming. J. Math. Anal. Appl. 259, 346–356 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hanson, M.A.: On Sufficiency of the Kuhn Tucker Conditions. Journal of Mathematical Analysis and Applications 80, 545–550 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wu, H.C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176, 46–59 (2007)

    Article  MATH  Google Scholar 

  9. Wu, H.C.: The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function. Math. Meth. Oper. Res. 66, 203–224 (2007)

    Article  MATH  Google Scholar 

  10. Wolfe, P.: A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244 (1961)

    MATH  MathSciNet  Google Scholar 

  11. Banks, H.T., Jacobs, M.Q.: A differential calculus for multifunctions. J. Math. Anal. Appl. 29, 246–272 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wu, H.C., Bector, C.R., Chandra, S., Vijay, V.: Duality in linear programming with fuzzy parameters and matrix games with fuzzy pay-offs. Fuzzy Sets and Systems 146, 253–269 (2004)

    Article  MathSciNet  Google Scholar 

  13. Bector, C.R., Chandra, S., Vidyottama, V.: Matrix games with fuzzy goals and fuzzy linear programming duality. Fuzzy Optimization and Decision Making 3, 255–269 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, Y., Shi, Y., Liu, Y.H.: Duality of fuzzy MC 2 linear programming: A constructive approach. Journal of Mathematical Analysis and Applications 194, 389–413 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wu, H.C.: Duality theorems in fuzzy mathematical programming problems based on the concept of necessity. Fuzzy Sets and Systems 139, 363–377 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, Hc., Wang, Yj. (2009). Optimality Condition and Mixed Duality for Interval-Valued Optimization. In: Cao, B., Li, TF., Zhang, CY. (eds) Fuzzy Information and Engineering Volume 2. Advances in Intelligent and Soft Computing, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03664-4_140

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03664-4_140

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03663-7

  • Online ISBN: 978-3-642-03664-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics