Skip to main content

Compatibility and Priority Method of Trapezoid Fuzzy Number Judgement Matrix

  • Conference paper
Fuzzy Information and Engineering Volume 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 62))

  • 1350 Accesses

Abstract

This paper introduced the trapezoid fuzzy number complementary judgement matrix, trapezoid fuzzy number reciprocal judgement matrix, and trapezoid fuzzy number hybrid judgement matrix. The general compatibility index is given to the three kinds judgement matrix. The priority method of judgement matrices are provided based on some distance. Finally, a numerical example is given to improve the feasibility and effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Satty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)

    Google Scholar 

  2. Herrera-Viedma, E., Herrera, F., Chiclana, F., et al.: Some Issues on Consistency of Fuzzy Preference Relations. European Journal of Operat ional Research 154, 98–109 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Xu, R.N., Zhai, X.Y.: Extensions of the Analytic Hhierarchy Process in Fuzzy Environment. Fuzzy Sets and Systems 52, 251–257 (1992)

    Article  MathSciNet  Google Scholar 

  4. Zimmermann, H.-J.: Fuzzy Set and Its Applications. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  5. Xu, Z.S.: On Consistency of the Weighted Geometric Mean Complex Judgement Matrix in AHP. European Journal of Operational Research 126, 683–687 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Yager, R.R., Kacprzyk, J.: The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer, Norwell (1997)

    Google Scholar 

  7. Xu, Z.S.: On Compatibility of Interval Fuzzy Preference Relations. Fuzzy Optimization and Decision Making 3, 217–225 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Xu, Z.S., Da, Q.L.: An Overview of Operators for Aggregating Information. International Journal of Intelligent Systems 18, 953–969 (2003)

    Article  MATH  Google Scholar 

  9. Yager, R.R.: A Procedure for Ordering Fuzzy Subsets of the Unit Interval. Information Science 24, 143–161 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yager, R.R.: On Ordered Weighted Averaging Aggregation Operators in Multi-Criteria Decision Making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Jh. (2009). Compatibility and Priority Method of Trapezoid Fuzzy Number Judgement Matrix. In: Cao, B., Li, TF., Zhang, CY. (eds) Fuzzy Information and Engineering Volume 2. Advances in Intelligent and Soft Computing, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03664-4_148

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03664-4_148

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03663-7

  • Online ISBN: 978-3-642-03664-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics