Skip to main content

On the Observability of Semilinear Fuzzy Dynamical Control Systems

  • Conference paper
Fuzzy Information and Engineering Volume 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 62))

  • 1005 Accesses

Abstract

In this paper, we prove the existence of fuzzy solutions and observability of initial value for the semilinear fuzzy dynamical control system. Results of this paper has improved in [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bressan, A.: The most likely path of a differential inclusion. J. Differential Equations 88, 155–174 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cesari, L.: Optimization - Theory and Application. Springer, Berlin (1983)

    Google Scholar 

  4. Davy, J.L.: Properties of the solution set of a generalized differential equation. Bull. Austral. Math. Soc. 6, 379–398 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24, 301–317 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis. Wiley, New York (1975)

    MATH  Google Scholar 

  7. Puri, M.L., Ralescu, D.A.: Differentials for fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ding, Z., Ma, M., Kandel, A.: On the observability of fuzzy dynamic control system (I). Fuzzy Sets and Systems 111, 225–236 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dunford, N., Schwartz, J.T.: Linear operators, Part I. John and Sons, New York (1958)

    Google Scholar 

  11. Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. World Scientific Publishers, Singapore (1995)

    Google Scholar 

  12. Ding, Z., Kandel, A.: On the observability of fuzzy dynamic control system (II). Fuzzy Sets and Systems 115, 261–277 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kwun, Y.C., Choi, E.H., Park, J.S., Park, J.H. (2009). On the Observability of Semilinear Fuzzy Dynamical Control Systems. In: Cao, B., Li, TF., Zhang, CY. (eds) Fuzzy Information and Engineering Volume 2. Advances in Intelligent and Soft Computing, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03664-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03664-4_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03663-7

  • Online ISBN: 978-3-642-03664-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics