Abstract
The object of this paper is to obtain some common fixed point theorems for compatible maps of type(β) on intuitionistic fuzzy metric spaces. Our results extend and generalize fixed point theorems on metric spaces, fuzzy metric spaces and intuitionistic fuzzy metric spaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banach, S.: Therrie les operations lineaires. Manograie Math. Warsaw, Poland (1932)
Cho, Y.J., Pathak, H.K., Kang, S.M., Jung, J.S.: Common fixed points of compatible of type(β) on fuzzy metric space. Fuzzy Sets and Systems 93, 99–111 (1998)
Edelstein, M.: On fixed and periodic points under contraction mappings. J. London Math. Soc. 37, 74–79 (1962)
Grabiec, M.: Fixed point in fuzzy metric spaces. Fuzzy Sets and Systems 27, 385–389 (1988)
Kramosil, J., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)
Mishra, S.N., Sharma, N., Singh, S.L.: Common fixed points of maps on fuzzy metric spaces. Internat. J. Math. Math. Sci. 17, 253–258 (1994)
Park, J.H., Park, J.S., Kwun, Y.C.: A common fixed point theorem in the intuitionistic fuzzy metric space. In: Advances in Natural Comput. Data Mining (Proc. 2nd ICNC and 3rd FSKD), pp. 293–300 (2006)
Park, J.H., Park, J.S., Kwun, Y.C.: Fixed point theorems in intuitionistic fuzzy metric space(I). JP J. Fixed Point Theory & Appl. 2(1), 79–89 (2007)
Park, J.H., Park, J.S., Kwun, Y.C.: Fixed points \(\mathcal{M}\)-fuzzy metric spaces. Advanced in Soft Computing 40, 206–215 (2007)
Park, J.S., Park, J.H., Kwun, Y.C.: On some results for five mappings using compatibility of type(α) in intuitionistic fuzzy metric space. International J. Fuzzy Logic Intelligent Systems 8(4), 299–305 (2008)
Park, J.S., Kim, S.Y., Kang, H.J.: A common fixed point theorem in the intuitionistic fuzzy metric space. J. KFIS 16(3), 321–325 (2006)
Park, J.S., Kwun, Y.C.: Some fixed point theorems in the intuitionistic fuzzy metric spaces. F.J.M.S. 24(2), 227–239 (2007)
Park, J.S., Kwun, Y.C., Park, J.H.: A fixed point theorem in the intuitionistic fuzzy metric spaces. F.J.M.S. 16(2), 137–149 (2005)
Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 314–334 (1960)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Park, J.S., Kwun, Y.C., Park, J.H. (2009). Some Results and Example for Compatible Maps of Type(β) on Intuitionistic Fuzzy Metric Space. In: Cao, B., Li, TF., Zhang, CY. (eds) Fuzzy Information and Engineering Volume 2. Advances in Intelligent and Soft Computing, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03664-4_69
Download citation
DOI: https://doi.org/10.1007/978-3-642-03664-4_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03663-7
Online ISBN: 978-3-642-03664-4
eBook Packages: EngineeringEngineering (R0)