Skip to main content

Some Results and Example for Compatible Maps of Type(β) on Intuitionistic Fuzzy Metric Space

  • Conference paper
Fuzzy Information and Engineering Volume 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 62))

Abstract

The object of this paper is to obtain some common fixed point theorems for compatible maps of type(β) on intuitionistic fuzzy metric spaces. Our results extend and generalize fixed point theorems on metric spaces, fuzzy metric spaces and intuitionistic fuzzy metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banach, S.: Therrie les operations lineaires. Manograie Math. Warsaw, Poland (1932)

    Google Scholar 

  2. Cho, Y.J., Pathak, H.K., Kang, S.M., Jung, J.S.: Common fixed points of compatible of type(β) on fuzzy metric space. Fuzzy Sets and Systems 93, 99–111 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Edelstein, M.: On fixed and periodic points under contraction mappings. J. London Math. Soc. 37, 74–79 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Grabiec, M.: Fixed point in fuzzy metric spaces. Fuzzy Sets and Systems 27, 385–389 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kramosil, J., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)

    MathSciNet  Google Scholar 

  6. Mishra, S.N., Sharma, N., Singh, S.L.: Common fixed points of maps on fuzzy metric spaces. Internat. J. Math. Math. Sci. 17, 253–258 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Park, J.H., Park, J.S., Kwun, Y.C.: A common fixed point theorem in the intuitionistic fuzzy metric space. In: Advances in Natural Comput. Data Mining (Proc. 2nd ICNC and 3rd FSKD), pp. 293–300 (2006)

    Google Scholar 

  8. Park, J.H., Park, J.S., Kwun, Y.C.: Fixed point theorems in intuitionistic fuzzy metric space(I). JP J. Fixed Point Theory & Appl. 2(1), 79–89 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Park, J.H., Park, J.S., Kwun, Y.C.: Fixed points \(\mathcal{M}\)-fuzzy metric spaces. Advanced in Soft Computing 40, 206–215 (2007)

    Google Scholar 

  10. Park, J.S., Park, J.H., Kwun, Y.C.: On some results for five mappings using compatibility of type(α) in intuitionistic fuzzy metric space. International J. Fuzzy Logic Intelligent Systems 8(4), 299–305 (2008)

    MathSciNet  Google Scholar 

  11. Park, J.S., Kim, S.Y., Kang, H.J.: A common fixed point theorem in the intuitionistic fuzzy metric space. J. KFIS 16(3), 321–325 (2006)

    Google Scholar 

  12. Park, J.S., Kwun, Y.C.: Some fixed point theorems in the intuitionistic fuzzy metric spaces. F.J.M.S. 24(2), 227–239 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Park, J.S., Kwun, Y.C., Park, J.H.: A fixed point theorem in the intuitionistic fuzzy metric spaces. F.J.M.S. 16(2), 137–149 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 314–334 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, J.S., Kwun, Y.C., Park, J.H. (2009). Some Results and Example for Compatible Maps of Type(β) on Intuitionistic Fuzzy Metric Space. In: Cao, B., Li, TF., Zhang, CY. (eds) Fuzzy Information and Engineering Volume 2. Advances in Intelligent and Soft Computing, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03664-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03664-4_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03663-7

  • Online ISBN: 978-3-642-03664-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics