Abstract
In this paper, we study the existence and uniqueness of solutions and controllability for the semilinear fuzzy integrodifferential equations in n-dimension fuzzy vector space \((E_N)^n\) by using the Banach fixed point theorem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balasubramaniam, P., Muralisankar, S.: Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions. International J. Computer & Mathematics with applications 47, 1115–1122 (2004)
Diamand, P., Kloeden, P.E.: Metric space of Fuzzy sets. World Scientific, Singapore (1994)
Kaleva, O.: Fuzzy differential equations. Fuzzy set and Systems 24, 301–317 (1987)
Mizmoto, M., Tanaka, K.: Some properties of fuzzy numbers. Advances in Fuzzy Sets Theory and applications, pp. 153–164. North-Holland Publishing Company, Amsterdam (1979)
Park, J.H., Park, J.S., Kwun, Y.C.: Controllability for the semilinear fuzzy integrodifferential equations with nonlocal conditions. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 221–230. Springer, Heidelberg (2006)
Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets and Systems 24, 319–330 (1987)
Wang, G., Li, Y., Wen, C.: On fuzzy n-cell number and n-dimension fuzzy vectors. Fuzzy Sets and Systems 158, 71–84 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kwun, Y.C., Park, M.J., Park, J.H. (2009). Controllability for the Semilinear Fuzzy Integrodifferential Equations in n-Dimension Fuzzy Vector Space. In: Cao, B., Li, TF., Zhang, CY. (eds) Fuzzy Information and Engineering Volume 2. Advances in Intelligent and Soft Computing, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03664-4_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-03664-4_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03663-7
Online ISBN: 978-3-642-03664-4
eBook Packages: EngineeringEngineering (R0)