Abstract
We consider the two-dimensional bin packing and strip packing problem, where a list of rectangles has to be packed into a minimal number of rectangular bins or a strip of minimal height, respectively. All packings have to be non-overlapping and orthogonal, i.e., axis-parallel. Our algorithm for strip packing has an absolute approximation ratio of 1.9396 and is the first algorithm to break the approximation ratio of 2 which was established more than a decade ago. Moreover, we present a polynomial time approximation scheme (\(\mathcal{PTAS}\)) for strip packing where rotations by 90 degrees are permitted and an algorithm for two-dimensional bin packing with an absolute worst-case ratio of 2, which is optimal provided \(\mathcal{P} \not= \mathcal{NP}\).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bansal, N.: Personal communication (2008)
Bansal, N., Caprara, A., Sviridenko, M.: Improved approximation algorithms for multidimensional bin packing problems. In: FOCS: Proc. 47th IEEE Symposium on Foundations of Computer Science, pp. 697–708 (2006)
Bansal, N., Caprara, A., Sviridenko, M.: A structural lemma in 2-dimensional packing, and its implications on approximability, IBM Research Division, RC24468, W0801-070 (2008), http://domino.research.ibm.com/library/cyberdig.nsf/index.html
Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions - inapproximability results and approximation schemes. Mathematics of Operations Research 31(1), 31–49 (2006)
Caprara, A.: Packing d-dimensional bins in d stages. Mathematics of Operations Research 33(1), 203–215 (2008)
Caprara, A., Lodi, A., Monaci, M.: Fast approximation schemes for two-stage, two-dimensional bin packing. Mathematics of Operations Research 30(1), 150–172 (2005)
Chlebík, M., Chlebíková, J.: Inapproximability results for orthogonal rectangle packing problems with rotations. In: CIAC: Proc. 6th Conference on Algorithms and Complexity, pp. 199–210 (2006)
Harren, R., van Stee, R.: Absolute approximation ratios for packing rectangles into bins. Journal of Scheduling (to appear, 2009)
Jansen, K., Solis-Oba, R.: New approximability results for 2-dimensional packing problems. In: MFCS: Proc. 32nd International Symposium on Mathematical Foundations of Computer Science, pp. 103–114 (2007)
Jansen, K., van Stee, R.: On strip packing with rotations. In: STOC: Proc. 37th ACM Symposium on Theory of Computing, pp. 755–761 (2005)
Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a rectangle. Algorithmica 47(3), 323–342 (2007)
Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock problem. Mathematics of Operations Research 25(4), 645–656 (2000)
Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.: Packing squares into a square. Journal of Parallel and Distributed Computing 10(3), 271–275 (1990)
Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)
Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing 26(2), 401–409 (1997)
van Stee, R.: An approximation algorithm for square packing. Operations Research Letters 32(6), 535–539 (2004)
Zhang, G.: A 3-approximation algorithm for two-dimensional bin packing. Operations Research Letters 33(2), 121–126 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harren, R., van Stee, R. (2009). Improved Absolute Approximation Ratios for Two-Dimensional Packing Problems. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-03685-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03684-2
Online ISBN: 978-3-642-03685-9
eBook Packages: Computer ScienceComputer Science (R0)