Skip to main content

Abstract

We show that for every α > 0, there exist n-point metric spaces (X,d) where every “scale” admits a Euclidean embedding with distortion at most α, but the whole space requires distortion at least \(\Omega(\sqrt{\alpha \log n})\). This shows that the scale-gluing lemma [Lee, SODA 2005] is tight, and disproves a conjecture stated there. This matching upper bound was known to be tight at both endpoints, i.e. when α = Θ(1) and α = Θ(logn), but nowhere in between.

More specifically, we exhibit n-point spaces with doubling constant λ requiring Euclidean distortion \(\Omega(\sqrt{\log \lambda \log n})\), which also shows that the technique of “measured descent” [Krauthgamer, et. al., Geometric and Functional Analysis] is optimal. We extend this to L p spaces with p > 1, where one requires distortion at least Ω((logn)1/q (logλ)1 − 1/q) when q =  max {p,2}, a result which is tight for every p > 1.

Research partially supported by NSF CCF-0644037.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut [extended abstract]. In: STOC 2005: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 553–562. ACM Press, New York (2005)

    Google Scholar 

  2. Aumann, Y., Rabani, Y.: An O(logk) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)

    Google Scholar 

  4. Chawla, S., Gupta, A., Räcke, H.: An improved approximation to sparsest cut. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver. ACM Press, New York (2005)

    Google Scholar 

  5. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: 44th Symposium on Foundations of Computer Science, pp. 534–543 (2003)

    Google Scholar 

  6. Krauthgamer, R., Lee, J.R., Mendel, M., Naor, A.: Measured descent: A new embedding method for finite metrics. Geom. Funct. Anal. 15(4), 839–858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Laakso, T.J.: Plane with \(A\sb \infty\)-weighted metric not bi-Lipschitz embeddable to \({\Bbb R}\sp N\). Bull. London Math. Soc. 34(6), 667–676 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lang, U., Plaut, C.: Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata 87(1-3), 285–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, J.R.: On distance scales, embeddings, and efficient relaxations of the cut cone. In: SODA 2005: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 92–101. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  10. Lee, J.R.: Volume distortion for subsets of Euclidean spaces. Discrete Comput. Geom. 41(4), 590–615 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matoušek, J.: On embedding expanders into \(l\sb p\) spaces. Israel J. Math. 102, 189–197 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Matoušek, J.: Lectures on discrete geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

    Book  MATH  Google Scholar 

  14. Newman, I., Rabinovich, Y.: A lower bound on the distortion of embedding planar metrics into Euclidean space. Discrete Comput. Geom. 29(1), 77–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rao, S.: Small distortion and volume preserving embeddings for planar and Euclidean metrics. In: Proceedings of the 15th Annual Symposium on Computational Geometry, pp. 300–306. ACM Press, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaffe, A., Lee, J.R., Moharrami, M. (2009). On the Optimality of Gluing over Scales. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics