On the optimality of gluing over scales

Alexander Jaffe* James R. Lee* Mohammad Moharrami*

Abstract

We show that for every $\alpha>0$, there exist n-point metric spaces (X, d) where every "scale" admits a Euclidean embedding with distortion at most α, but the whole space requires distortion at least $\Omega(\sqrt{\alpha \log n})$. This shows that the scale-gluing lemma [Lee, SODA 2005] is tight, and disproves a conjecture stated there. This matching upper bound was known to be tight at both endpoints, i.e. when $\alpha=\Theta(1)$ and $\alpha=\Theta(\log n)$, but nowhere in between.

More specifically, we exhibit n-point spaces with doubling constant λ requiring Euclidean distortion $\Omega(\sqrt{\log \lambda \log n})$, which also shows that the technique of "measured descent" [Krauthgamer, et. al., Geometric and Functional Analysis] is optimal. We extend this to L_{p} spaces with $p>1$, where one requires distortion at least $\Omega\left((\log n)^{1 / q}(\log \lambda)^{1-1 / q}\right)$ when $q=\max \{p, 2\}$, a result which is tight for every $p>1$.

1 Introduction

Suppose one is given a collection of mappings from some finite metric space (X, d) into a Euclidean space, each of which reflects the geometry at some "scale" of X. Is there a non-trivial way of gluing these mappings together to form a global mapping which reflects the entire geometry of X ? The answers to such questions have played a fundamental role in the best-known approximation algorithms for Sparsest Cut [7, 10, 4, 1] and Graph Bandwidth [17, 7, 11, and have found applications in approximate multi-commodity max-flow/min-cut theorems in graphs [17, 7]. In the present paper, we show that the approaches of [7] and [10] are optimal, disproving a conjecture stated in [10].

Let (X, d) be an n-point metric space, and suppose that for every $k \in \mathbb{Z}$, we are given a nonexpansive mapping $\phi_{k}: X \rightarrow L_{2}$ which satisfies the following. For every $x, y \in X$ with $d(x, y) \geq 2^{k}$, we have

$$
\left\|\phi_{k}(x)-\phi_{k}(y)\right\| \geq \frac{2^{k}}{\alpha}
$$

The Gluing Lemma of [10] (generalizing the approach of [7]) shows that the existence of such a collection $\left\{\phi_{k}\right\}$ yields a Euclidean embedding of (X, d) with distortion $O(\sqrt{\alpha \log n})$. (See Section 1.1 for the relevant definitions on embeddings and distortion.) This is known to be tight when $\alpha=\Theta(1)$ [16] and also when $\alpha=\Theta(\log n)$ [13, 2], but nowhere in between. In fact, in [10], the second named author conjectured that one could achieve $O(\alpha+\sqrt{\log n})$ (this is indeed stronger, since one can always construct $\left\{\phi_{k}\right\}$ with $\alpha=O(\log n)$).

In the present paper, we give a family of examples which shows that the $\sqrt{\alpha \log n}$ bound is tight for any dependence $\alpha(n)=O(\log n)$. In fact, we show more. Let $\lambda(X)$ denote the doubling

[^0]constant of X, i.e. the smallest number λ so that every open ball in X can be covered by λ balls of half the radius. In [7], using the method of "measure descent," the authors show that (X, d) admits a Euclidean embedding with distortion $O(\sqrt{\log \lambda(X) \log n})$. (This is a special case of the Gluing Lemma since one can always find $\left\{\phi_{k}\right\}$ with $\alpha=O(\log \lambda(X))$ [5). Again, this bound was known to be tight for $\lambda(X)=\Theta(1)$ [8, 2, 5] and $\lambda(X)=n^{\Theta(1)}$ [13, 2], but nowhere in between. We provide the matching lower bound for any dependence of $\lambda(X)$ on n. We also generalize our method to give tight lower bounds on L_{p} distortion for every fixed $p>1$.

Construction and analysis. In some sense, our lower bound examples are an interpolation between the multi-scale method of [16] and [8], and the expander Poincaré inequalities of [13, 2, 14]. We start with a vertex-transitive expander graph G on m nodes. If D is the diameter of G, then we create $D+1$ copies $G^{1}, G^{2}, \ldots, G^{D+1}$ of G where $u \in G^{i}$ is connected to $v \in G^{i+1}$ if (u, v) is an edge in G, or if $u=v$. We then connect a vertex s to every node in G^{1} and a vertex t to every node in G^{D+1} by edges of length D. This yields the graph \vec{G} described in Section 2.2.,

In Section 3, we show that whenever there is a non-contracting embedding f of \vec{G} into L_{2}, the following holds. If $\gamma=\frac{\|f(s)-f(t)\|}{d_{\vec{G}}(s, t)}$, then some edge of \vec{G} gets stretched by at least $\sqrt{\gamma^{2}+\Omega(\log m)^{2}}$, i.e. there is a "stretch increase." This is proved by combining the uniform convexity of L_{2} (i.e. the Pythagorean theorem), with the well-known contraction property of expander graphs mapped into Hilbert space. To convert the "average" nature of this contraction to information about a specific edge, we symmetrize the embedding over all automorphisms of G (which was chosen to be vertex-transitive).

To exploit this stretch increase recursively, we construct a graph $\vec{G}^{\ominus k}$ inductively as follows: $\vec{G}^{\ominus k}$ is formed by replacing every edge of $\vec{G}^{\ominus k-1}$ by a copy of \vec{G} (see Section 2.1 for the formal definitions). Now a simple induction shows that in a non-contracting embedding of $\vec{G}^{\ominus k}$, there must be an edge stretched by at least $\Omega(\sqrt{k} \log m)$. In Section 3.1, a similar argument is made for L_{p} distortion, for $p>1$, but here we have to argue about "quadrilaterals" instead of "triangles" (in order to apply the uniform convexity inequality in L_{p}), and it requires slightly more effort to find a good quadrilateral.

Finally, we observe that if \widetilde{G} is the graph formed by adding two tails of length $3 D$ hanging off s and t in \vec{G}, then (following the analysis of [8, 9]), one has $\log \lambda\left(\widetilde{G}^{\ominus k}\right) \lesssim \log m$. The same lower bound analysis also works for $\widetilde{G}^{\ominus k}$, so since $n=\left|V\left(\widetilde{G}^{\ominus k}\right)\right|=2^{\ominus(k \log m)}$, the lower bound is

$$
\sqrt{k} \log m \approx \sqrt{\log m \log n} \gtrsim \sqrt{\log \lambda\left(\widetilde{G}^{\ominus k}\right) \log n}
$$

completing the proof.

1.1 Preliminaries

For a graph G, we will use $V(G), E(G)$ to denote the sets of vertices and edges of G, respectively. Sometimes we will equip G with a non-negative length function len : $E(G) \rightarrow \mathbb{R}_{+}$, and we let $d_{\text {len }}$ denote the shortest-path (semi-)metric on G. We refer to the pair (G, len) as a metric graph, and often len will be implicit, in which case we use d_{G} to denote the path metric. We use $\operatorname{Aut}(G)$ to denote the group of automorphisms of G.

Given two expressions E and E^{\prime} (possibly depending on a number of parameters), we write $E=O\left(E^{\prime}\right)$ to mean that $E \leq C E^{\prime}$ for some constant $C>0$ which is independent of the parameters. Similarly, $E=\Omega\left(E^{\prime}\right)$ implies that $E \geq C E^{\prime}$ for some $C>0$. We also write $E \lesssim E^{\prime}$ as a synonym for $E=O\left(E^{\prime}\right)$. Finally, we write $E \approx E^{\prime}$ to denote the conjunction of $E \lesssim E^{\prime}$ and $E \gtrsim E^{\prime}$.

Figure 1: A single edge $H, H \oslash K_{2,3}$, and $H \oslash K_{2,3} \oslash K_{2,2}$.
Embeddings and distortion. If $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are metric spaces, and $f: X \rightarrow Y$, then we write

$$
\|f\|_{\text {Lip }}=\sup _{x \neq y \in X} \frac{d_{Y}(f(x), f(y))}{d_{X}(x, y)} .
$$

If f is injective, then the distortion of f is $\operatorname{defined}$ by $\operatorname{dist}(f)=\|f\|_{\text {Lip }} \cdot\left\|f^{-1}\right\|_{\text {Lip }}$. A map with distortion D will sometimes be referred to as D-bi-lipschitz. If $d_{Y}(f(x), f(y)) \leq d_{X}(x, y)$ for every $x, y \in X$, we say that f is non-expansive. If $d_{Y}(f(x), f(y)) \geq d_{X}(x, y)$ for every $x, y \in X$, we say that f is non-contracting. For a metric space X, we use $c_{p}(X)$ to denote the least distortion required to embed X into some L_{p} space.

Finally, for $x \in X, r \in \mathbb{R}_{+}$, we define the open ball $B(x, r)=\{y \in X: d(x, y)<r\}$. Recall that the doubling constant of a metric space (X, d) is the infimum over all values λ such that every ball in X can be covered by λ balls of half the radius. We use $\lambda(X, d)$ to denote this value.

We now state the main theorem of the paper.
Theorem 1.1. For any positive nondecreasing function $\lambda(n)$, there exists a family of n-vertex metric graphs $\widetilde{G}^{\ominus k}$ such that $\lambda\left(\widetilde{G}^{\ominus k}\right) \lesssim \lambda(n)$, and for every fixed $p>1$,

$$
c_{p}\left(\widetilde{G}^{\ominus k}\right) \gtrsim(\log n)^{1 / q}(\log \lambda(n))^{1-1 / q}
$$

where $q=\max \{p, 2\}$.

2 Metric construction

$2.1 \oslash$-products

An s - t graph G is a graph which has two distinguished vertices $s, t \in V(G)$. For an s - t graph, we use $s(G)$ and $t(G)$ to denote the vertices labeled s and t, respectively. We define the length of an s - t graph G as $\operatorname{len}(G)=d_{\text {len }}(s, t)$.

Definition 2.1 (Composition of s-t graphs). Given two s-t graphs H and G, define $H \oslash G$ to be the s-t graph obtained by replacing each edge $(u, v) \in E(H)$ by a copy of G (see Figure 1). Formally,

- $V(H \oslash G)=V(H) \cup(E(H) \times(V(G) \backslash\{s(G), t(G)\}))$.
- For every edge $e=(u, v) \in E(H)$, there are $|E(G)|$ edges,

$$
\begin{aligned}
& \left\{\left(\left(e, v_{1}\right),\left(e, v_{2}\right)\right) \mid\left(v_{1}, v_{2}\right) \in E(G) \text { and } v_{1}, v_{2} \notin\{s(G), t(G)\}\right\} \cup \\
& \quad\{(u,(e, w)) \mid(s(G), w) \in E(G)\} \cup\{((e, w), v) \mid(w, t(G)) \in E(G)\}
\end{aligned}
$$

- $s(H \oslash G)=s(H)$ and $t(H \oslash G)=t(H)$.

If H and G are equipped with length functions len_{H}, len ${ }_{G}$, respectively, we define len $=\operatorname{len}_{H \oslash G}$ as follows. Using the preceding notation, for every edge $e=(u, v) \in E(H)$,

$$
\begin{aligned}
\text { len } \begin{aligned}
\left(\left(e, v_{1}\right),\left(e, v_{2}\right)\right) & =\frac{\operatorname{len}_{H}(e)}{d_{\operatorname{len}_{G}}(s(G), t(G))} \operatorname{len}_{G}\left(v_{1}, v_{2}\right) \\
\text { len }(u,(e, w)) & =\frac{\operatorname{len}_{H}(e)}{d_{\operatorname{len}_{G}}(s(G), t(G))} \operatorname{len}_{G}(s(G), w) \\
\text { len }((e, w), v) & =\frac{\operatorname{len}_{H}(e)}{d_{\operatorname{len}_{G}}(s(G), t(G))} \operatorname{len}_{G}(w, t(G))
\end{aligned} . .\left\{\begin{array}{l}
\end{array} .\right.
\end{aligned}
$$

This choice implies that $H \oslash G$ contains an isometric copy of $\left(V(H), d_{\operatorname{len}_{H}}\right)$.
Observe that there is some ambiguity in the definition above, as there are two ways to substitute an edge of H with a copy of G, thus we assume that there exists some arbitrary orientation of the edges of H. However, for our purposes the graph G will be symmetric, and thus the orientations are irrelevant.

Definition 2.2 (Recursive composition). For an $s-t \operatorname{graph} G$ and a number $k \in \mathbb{N}$, we define $G^{\oslash k}$ inductively by letting $G^{\oslash 0}$ be a single edge of unit length, and setting $G^{\oslash k}=G^{\oslash k-1} \oslash G$.

The following result is straightforward.
Lemma 2.3 (Associativity of $\oslash)$. For any three graphs A, B, C, we have $(A \oslash B) \oslash C=A \oslash(B \oslash C)$, both graph-theoretically and as metric spaces.

Definition 2.4. For two graphs G, H, a subset of vertices $X \subseteq V(H)$ is said to be a copy of G if there exists a bijection $f: V(G) \rightarrow X$ with distortion 1, i.e. $d_{H}(f(u), f(v))=C \cdot d_{G}(u, v)$ for some constant $C>0$.

Now we make the following two simple observations about copies of H and G in $H \oslash G$.
Observation 2.5. The graph $H \oslash G$ contains $|E(H)|$ distinguished copies of the graph G, one copy corresponding to each edge in H.

Observation 2.6. The subset of vertices $V(H) \subseteq V(H \oslash G)$ form an isometric copy of H.

2.2 A stretched \vec{G}

Let $G=(V, E)$ be an unweighted graph, and put $D=\operatorname{diam}(G)$. We define a metric s - t graph \vec{G} which has $D+1$ layers isomorphic to G, with edges between the layers, and a pair of endpoints s, t. Formally,

$$
\begin{aligned}
V(\vec{G})= & \{s, t\} \cup\left\{v^{(i)}: v \in V, i \in[D+1]\right\} \\
E(\vec{G})= & \left\{\left(s, v^{(1)}\right),\left(v^{(D+1)}, t\right): v \in V\right\} \\
& \cup\left\{\left(u^{(i)}, v^{(i+1)}\right),\left(u^{(j)}, v^{(j)}\right):(u, v) \in E, i \in[D], j \in[D+1]\right\} \\
& \cup\left\{\left(v^{(i)}, v^{(i+1)}\right): v \in V, i \in[D]\right\}
\end{aligned}
$$

We put len $\left(s, v^{(1)}\right)=\operatorname{len}\left(v^{(D+1)}, t\right)=D$ for $v \in V$, $\operatorname{len}\left(u^{(i)}, v^{(i+1)}\right)=\operatorname{len}\left(u^{(j)}, v^{(j)}\right)=1$ for $(u, v) \in E$, $i \in[D], j \in[D+1]$ and $\operatorname{len}\left(v^{(i)}, v^{(i+1)}\right)=1$ for $v \in V, i \in[D]$. We refer to edges of the form $\left(u^{(i)}, v^{(i)}\right)$ as vertical edges. All other edges are called horizontal edges. In particular, there are $D+1$ copies $G^{(1)}, \ldots, G^{(D+1)}$ of G in \vec{G} which are isometric to G itself, and their edges are all vertical.
A doubling version, following Laakso. Let \vec{G} be a stretched graph as in Section [2.2, with $D=\operatorname{diam}(G)$, and let $s^{\prime}=s(\vec{G}), t^{\prime}=t(\vec{G})$. Consider a new metric $s-t$ graph \widetilde{G}, which has two new vertices s, t and two new edges $\left(s, s^{\prime}\right),\left(t^{\prime}, t\right)$ with $\operatorname{len}\left(s, s^{\prime}\right)=\operatorname{len}\left(t^{\prime}, t\right)=3 D$.
Claim 2.7. For any graph G with $|V(G)|=m$, and any $k \in \mathbb{N}$, we have $\log \lambda\left(\widetilde{G}^{\ominus k}\right) \lesssim \log m$.
The proof of the claim is similar to [8, [9, and follows from the following three results.
We define $\operatorname{tri}(G)=\max _{v \in V(G)}\left(d_{\operatorname{len}}(s, v)+d_{\operatorname{len}}(v, t)\right)$. For any graph G, we have $\operatorname{len}(\widetilde{G})=$ $d(s, t)=9 D$, and it is not hard to verify that $\operatorname{tri}\left(\widetilde{G}^{\ominus k}\right) \leq \operatorname{len}\left(\widetilde{G}^{\ominus k}\right)\left(1+\frac{1}{9 D-1}\right)$. For convenience, let G_{0} be the top-level copy of \widetilde{G} in $\widetilde{G}^{\ominus k}$, and H be the graph $\widetilde{G}^{\ominus k-1}$. Then for any $e \in E\left(G_{0}\right)$, we refer to the copy of H along edge e as H_{e}.

Observation 2.8. If $r>\frac{\operatorname{tr}\left(\widetilde{G}^{\oslash k}\right)}{3}$, then the ball $B(x, r)$ in $\widetilde{G}^{\ominus k}$ may be covered by at most $|V(\widetilde{G})|$ balls of radius $r / 2$.

Proof. For any $e \in E\left(G_{0}\right)$, we have $r>\frac{\operatorname{len}(e)}{\operatorname{len}(H)} \operatorname{tri}(H)$, so every point in H_{e} is less than $r / 2$ from an endpoint of e. Thus all of $\widetilde{G}^{\oslash k}$ is covered by placing balls of radius $\frac{\operatorname{tri}\left(\widetilde{G}^{\otimes k}\right)}{6}$ around each vertex of G_{0}.

Lemma 2.9. If $s \in B(x, r)$, then one can cover the ball $B(x, r)$ in $\widetilde{G}^{\ominus k}$ with at most $|E(\widetilde{G})||V(\widetilde{G})|$ balls of radius $r / 2$.

Proof. First consider the case in which $r>\frac{\operatorname{len}\left(\widetilde{G}^{\ominus k}\right)}{6}$. Then for any edge e in $\widetilde{G}^{\ominus k}$, we have $r>$ $\frac{\operatorname{len}(e)}{\operatorname{len}(H)} \cdot \frac{\operatorname{tri}(H)}{3}$. Thus by Observation [2.8, we may cover H_{e} by $|V(\widetilde{G})|$ balls of radius $r / 2$. This gives a covering of all of $\widetilde{G}^{\ominus k}$ by at most $|E(\widetilde{G})||V(\widetilde{G})|$ balls of radius $r / 2$.

Otherwise, assume $\frac{\operatorname{len}\left(\widetilde{G}^{\oslash k}\right)}{6} \geq r$. Since $s \in B(x, r)$, but $2 r \leq \frac{\operatorname{len}\left(\widetilde{G}^{\varnothing k}\right)}{3}$, the ball must be completely contained inside $H_{\left(s, s^{\prime}\right)}^{6}$. By induction, we can find a sufficient cover of this smaller graph.

Lemma 2.10. We can cover any ball $B(x, r)$ in $\widetilde{G}^{\ominus k}$ with at most $2|V(\widetilde{G}) \| E(\widetilde{G})|^{2}$ balls of radius $r / 2$.
Proof. We prove this lemma using induction. For $\widetilde{G}^{\oslash 0}$, the claim holds trivially. Next, if any H_{e} contains all of $B(x, r)$, then by induction we are done. Otherwise, for each H_{e} containing $x, B(x, r)$ contains an endpoint of e. Then by Lemma $\widetilde{2.9}$, we may cover H_{e} by at most $|E(\widetilde{G})||V(\widetilde{G})|$ balls of radius $r / 2$. For all other edges $e^{\prime}=(u, v), x \notin H_{e^{\prime}}$, so we have:

$$
V\left(H_{e^{\prime}}\right) \cap B(x, r) \subseteq B(v, \max (0, r-d(x, v))) \cup B(u, \max (0, r-d(x, u))) .
$$

Thus, using Lemma 2.9 on both of the above balls, we may cover $V\left(H_{\mathcal{e}^{\prime}}\right) \cap \underset{\sim}{B}(x, r)$ by at most $2|E(\widetilde{G})||V(\widetilde{G})|$ balls of radius $r / 2$. Hence, in total, we need at most $2|V(\widetilde{G})||E(\widetilde{G})|^{2}$ balls of radius $r / 2$ to cover all of $B(x, r)$.

Proof of Claim 2.7. First note that $|V(\widetilde{G})|=m(D+1)+2 \lesssim m^{2}$. By Lemma 2.10, we have

$$
\lambda\left(\widetilde{G}^{\ominus k}\right) \leq 2|V(\widetilde{G})||E(\widetilde{G})|^{2} \leq 2|V(\widetilde{G})|^{5} \lesssim m^{10}
$$

Hence $\log \lambda\left(\widetilde{G}^{\ominus k}\right) \lesssim \log m$.

3 Lower bound

For any $\pi \in \operatorname{Aut}(G)$, we define a corresponding automorphism $\tilde{\pi}$ of \tilde{G} by $\tilde{\pi}(s)=s, \tilde{\pi}(t)=t$, $\tilde{\pi}\left(s^{\prime}\right)=s^{\prime}, \tilde{\pi}\left(t^{\prime}\right)=t^{\prime}$, and $\tilde{\pi}\left(v^{(i)}\right)=\pi(v)^{(i)}$ for $v \in V, i \in[D+1]$.
Lemma 3.1. Let G be a vertex transitive graph. Let $f: V(\widetilde{G}) \rightarrow L_{2}$ be an injective mapping and define $\bar{f}: V(\widetilde{G}) \rightarrow L_{2}$ by

$$
\bar{f}(x)=\frac{1}{\sqrt{|\operatorname{Aut}(G)|}}(f(\tilde{\pi} x))_{\pi \in \operatorname{Aut}(G)}
$$

Let β be such that for every $i \in[D+1]$ there exists a vertical edge $\left(u^{(i)}, v^{(i)}\right)$ with $\left\|\bar{f}\left(u^{(i)}\right)-\bar{f}\left(v^{(i)}\right)\right\| \geq$ β. Then there exists a horizontal edge $(x, y) \in E(\widetilde{G})$ such that

$$
\begin{equation*}
\frac{\|\bar{f}(x)-\bar{f}(y)\|^{2}}{d_{\widetilde{G}}(x, y)^{2}} \geq \frac{\overline{\|f(s)-\bar{f}(t)\|^{2}}}{d_{\widetilde{G}}(s, t)^{2}}+\frac{\beta^{2}}{36} \tag{1}
\end{equation*}
$$

Proof. Let $D=\operatorname{diam}(G)$. We first observe three facts about \bar{f}, which rely on the fact that when $\operatorname{Aut}(G)$ is transitive, for every $x \in V$, the orbits $\{\pi(x)\}_{\pi \in \operatorname{Aut}(G)}$ all have the same cardinality.
(F1) $\|\bar{f}(s)-\bar{f}(t)\|=\|f(s)-f(t)\|$
(F2) For all $u, v \in V$,

$$
\begin{aligned}
\left\|\bar{f}(s)-\bar{f}\left(v^{(1)}\right)\right\| & =\left\|\bar{f}(s)-\bar{f}\left(u^{(1)}\right)\right\|, \\
\left\|\bar{f}(t)-\bar{f}\left(v^{(D+1)}\right)\right\| & =\left\|\bar{f}(t)-\bar{f}\left(u^{(D+1)}\right)\right\| .
\end{aligned}
$$

(F3) For every $u, v \in V, i \in[D]$,

$$
\left\|\bar{f}\left(v^{(i)}\right)-\bar{f}\left(v^{(i+1)}\right)\right\|=\left\|\bar{f}\left(u^{(i)}\right)-\bar{f}\left(u^{(i+1)}\right)\right\| .
$$

(F4) For every pair of vertices $u, v \in V$ and $i \in[D+1]$,

$$
\left\langle\bar{f}(s)-\bar{f}(t), \bar{f}\left(u^{(i)}\right)-\bar{f}\left(v^{(i)}\right)\right\rangle=0 .
$$

Let $z=\frac{\bar{f}(s)-\bar{f}(t)}{\|f(s)-f(t)\|}$. Fix some $r \in V$ and let $\rho_{0}=\left|\left\langle z, \bar{f}(s)-\bar{f}\left(r^{(1)}\right)\right\rangle\right|, \rho_{i}=\left|\left\langle z, \bar{f}\left(r^{(i)}\right)-\bar{f}\left(r^{(i+1)}\right)\right\rangle\right|$ for $i=1,2, \ldots, D$ and $\rho_{D+1}=\left|\left\langle z, \bar{f}(t)-\bar{f}\left(r^{(D+1)}\right)\right\rangle\right|$. Note that, by (F2) and (F3) above, the values $\left\{\rho_{i}\right\}$ do not depend on the representative $r \in V$. In this case, we have

$$
\begin{equation*}
\sum_{i=0}^{D+1} \rho_{i} \geq\|\bar{f}(s)-\bar{f}(t)\|=9 \gamma D \tag{2}
\end{equation*}
$$

where we put $\gamma=\frac{\|\bar{f}(s)-\bar{f}(t)\|}{d_{\widetilde{G}}(s, t)}$. Note that $\gamma>0$ since f is injective.
Recalling that $d_{\widetilde{G}}(s, t)=9 D$ and $d_{\widetilde{G}}\left(s, r^{(1)}\right)=4 D$, observe that if $\rho_{0}^{2} \geq\left(1+\frac{\beta^{2}}{36 \gamma^{2}}\right)(4 \gamma D)^{2}$, then

$$
\max \left(\frac{\left.\| \bar{f}(s)-\bar{f}\left(s^{\prime}\right)\right) \|^{2}}{d_{\widetilde{G}}\left(s, s^{\prime}\right)^{2}}, \frac{\left\|\bar{f}\left(s^{\prime}\right)-\bar{f}\left(r^{(1)}\right)\right\|^{2}}{d_{\widetilde{G}}\left(s^{\prime}, r^{(1)}\right)^{2}}\right) \geq \gamma^{2}+\frac{\beta^{2}}{36},
$$

verifying (11). The symmetric argument holds for ρ_{D+1}, thus we may assume that

$$
\rho_{0}, \rho_{D+1} \leq 4 \gamma D \sqrt{1+\frac{\beta^{2}}{36 \gamma^{2}}} \leq 4 \gamma D\left(1+\frac{\beta^{2}}{72 \gamma^{2}}\right)
$$

In this case, by (2), there must exist an index $j \in[D]$ such that

$$
\rho_{j} \geq\left(1-\frac{8 \beta^{2}}{72 \gamma^{2}}\right) \gamma=\left(1-\frac{\beta^{2}}{9 \gamma^{2}}\right) \gamma .
$$

Now, consider a vertical edge $\left(u^{(j+1)}, v^{(j+1)}\right)$ with $\left\|\bar{f}\left(u^{(j)}\right)-\bar{f}\left(v^{(j)}\right)\right\| \geq \beta$, and let

$$
u^{\prime}=\bar{f}\left(u^{(j)}\right)+\left\langle z, \bar{f}\left(u^{(j)}\right)-\bar{f}\left(u^{(j+1)}\right)\right\rangle z .
$$

From (F4), and the Pythagorean inequality we have,

$$
\begin{aligned}
& \max \left(\left\|\bar{f}\left(u^{(j)}\right)-\bar{f}\left(u^{(j+1)}\right)\right\|^{2},\left\|\bar{f}\left(u^{(j)}\right)-\bar{f}\left(v^{(j+1)}\right)\right\|^{2}\right)= \\
&\left\|\bar{f}\left(u^{(j)}\right)-u^{\prime}\right\|^{2}\left.+\max \left(\left\|u^{\prime}-\bar{f}\left(u^{(j+1)}\right)\right\|^{2},\left\|u^{\prime}-\bar{f}\left(v^{(j+1)}\right)\right\|^{2}\right)\right) \\
& \geq \rho_{j}^{2}+\frac{\beta^{2}}{4} \\
& \geq\left(1-\frac{2 \beta^{2}}{9 \gamma^{2}}\right) \gamma^{2}+\frac{\beta^{2}}{4} \\
& \geq \gamma^{2}+\frac{\beta^{2}}{36}
\end{aligned}
$$

again verifying (11) for one of the two edges $\left(u^{(j)}, v^{(j+1)}\right)$ or $\left(u^{(j)}, u^{(j+1)}\right)$.
The following lemma is well-known, and follows from the variational characterization of eigenvalues (see, e.g. [15, Ch. 15]).

Lemma 3.2. If $G=(V, E)$ is a d-regular graph with second Laplacian eigenvalue $\mu_{2}(G)$, then for any mapping $f: V \rightarrow L_{2}$, we have

$$
\begin{equation*}
\mathbb{E}_{x, y \in V}\|f(x)-f(y)\|^{2} \lesssim \frac{d}{\mu_{2}(G)} \mathbb{E}_{(x, y) \in E}\|f(x)-f(y)\|^{2} \tag{3}
\end{equation*}
$$

The next lemma shows that when we use an expander graph, we get a significant increase in stretch for edges of \widetilde{G}.

Lemma 3.3. Let $G=(V, E)$ be a d-regular vertex-transitive graph with $m=|V|$ and $\mu_{2}=\mu_{2}(G)$. If $f: V(\widetilde{G}) \rightarrow L_{2}$ is any non-contractive mapping, then there exists a horizontal edge $(x, y) \in E(\widetilde{G})$ with

$$
\begin{equation*}
\frac{\|f(x)-f(y)\|^{2}}{d_{\widetilde{G}}(x, y)^{2}} \geq \frac{\|f(s)-f(t)\|^{2}}{d_{\widetilde{G}}(s, t)^{2}}+\Omega\left(\frac{\mu_{2}}{d}\left(\log _{d} m\right)^{2}\right) . \tag{4}
\end{equation*}
$$

Proof. We need only prove the existence of an $(x, y) \in E(\widetilde{G})$ such that (4) is satisfied for \bar{f} (as defined in Lemma 3.11), as this implies it is also satisfied for f (possibly for some other edge (x, y)).

Consider any layer $G^{(i)}$ in \widetilde{G}, for $i \in[D+1]$. Applying (3) and using the fact that f is non-contracting, we have

$$
\begin{aligned}
\mathbb{E}_{(u, v) \in E}\left\|\bar{f}\left(u^{(i)}\right)-\bar{f}\left(v^{(i)}\right)\right\|^{2} & =\mathbb{E}_{(u, v) \in E}\left\|f\left(u^{(i)}\right)-f\left(v^{(i)}\right)\right\|^{2} \\
& \gtrsim \frac{\mu_{2}}{d} \mathbb{E}_{u, v \in V}\left\|f\left(u^{(i)}\right)-f\left(v^{(i)}\right)\right\|^{2} \\
& \geq \frac{\mu_{2}}{d} \mathbb{E}_{u, v \in V} d_{G}(u, v)^{2} \\
& \gtrsim \frac{\mu_{2}}{d}\left(\log _{d} m\right)^{2} .
\end{aligned}
$$

In particular, in every layer $i \in[D+1]$, at least one vertical edge $\left(u^{(i)}, v^{(i)}\right)$ has $\left\|\bar{f}\left(u^{(i)}\right)-\bar{f}\left(v^{(i)}\right)\right\| \gtrsim$ $\sqrt{\frac{\mu_{2}}{d}} \log _{d} m$. Therefore the desired result follows from Lemma 3.1.

We now to come our main theorem.
Theorem 3.4. If $G=(V, E)$ is a d-regular, m-vertex, vertex-transitive graph with $\mu_{2}=\mu_{2}(G)$, then

$$
c_{2}\left(\widetilde{G}^{\ominus k}\right) \gtrsim \sqrt{\frac{\mu_{2} k}{d}} \log _{d} m
$$

Proof. Let $f: V\left(\widetilde{G}^{\ominus k}\right) \rightarrow L_{2}$ be any non-contracting embedding. The theorem follows almost immediately by induction: Consider the top level copy of \widetilde{G} in $\widetilde{G}^{\ominus k}$, and call it G_{0}. Let $(x, y) \in$ $E\left(G_{0}\right)$ be the horizontal edge for which $\|f(x)-f(y)\|$ is longest. Clearly this edge spans a copy of $\widetilde{G}^{\oslash k-1}$, which we call G_{1}. By induction and an application of Lemma 3.3, there exists a (universal) constant $c>0$ and an edge $(u, v) \in E\left(G_{1}\right)$ such that

$$
\begin{aligned}
\frac{\|f(u)-f(v)\|^{2}}{d_{\tilde{G}^{\ominus k}}(u, v)^{2}} & \geq \frac{c \mu_{2}(k-1)}{d}\left(\log _{d} m\right)^{2}+\frac{\|f(x)-f(y)\|^{2}}{d_{\tilde{G}^{\ominus k}}(x, y)^{2}} \\
& \geq \frac{c \mu_{2}(k-1)}{d}\left(\log _{d} m\right)^{2}+\frac{c \mu_{2}}{d}\left(\log _{d} m\right)^{2}+\frac{\|f(s)-f(t)\|^{2}}{d_{\tilde{G}^{\ominus k}}(s, t)},
\end{aligned}
$$

completing the proof.
Corollary 3.5. If $G=(V, E)$ is an $O(1)$-regular m-vertex, vertex-transitive graph with $\mu_{2}=\Omega(1)$, then

$$
c_{2}\left(\widetilde{G}^{\ominus k}\right) \gtrsim \sqrt{k} \log m \approx \sqrt{\log m \log N},
$$

where $N=\left|V\left(\widetilde{G}^{\ominus k}\right)\right|=2^{\Theta(k \log m)}$.
We remark that infinite families of $O(1)$-regular vertex-transitive graphs with $\mu_{2} \geq \Omega(1)$ are well-known. In particular, one can take any construction coming from the Cayley graphs of finitely generated groups. We refer to the survey [6]; see, in particular, Margulis' construction in Section 8.

3.1 Extension to other L_{p} spaces

Our previous lower bound dealt only with L_{2}. We now prove the following.
Theorem 3.6. If $G=(V, E)$ is an $O(1)$-regular m-vertex, vertex-transitive graph with $\mu_{2}=\Omega(1)$, for any $p>1$, there exists a constant $C(p)$ such that

$$
c_{p}\left(\widetilde{G}^{\ominus k}\right) \gtrsim C(p) k^{1 / q} \log m \approx C(p)(\log m)^{1-1 / q}(\log N)^{1 / q}
$$

were $N=\left|V\left(\widetilde{G}^{\ominus k}\right)\right|$ and $q=\max \{p, 2\}$.
The only changes required are to Lemma 3.2 and Lemma 3.1 (which uses orthogonality). The first can be replaced by Matoušek's [14] Poincaré inequality: If $G=(V, E)$ is an $O(1)$-regular expander graph with $\mu_{2}=\Omega(1)$, then for any $p \in[1, \infty)$ and $f: V \rightarrow L_{p}$,

$$
\mathbb{E}_{x, y \in V}\|f(x)-f(y)\|_{p}^{p} \leq O(2 p)^{p} \mathbb{E}_{(x, y) \in E}\|f(x)-f(y)\|_{p}^{p}
$$

Generalizing Lemma 3.1 is more involved. We need the following well-known 4-point inequalities for L_{p} spaces.
Lemma 3.7. Consider any $p \geq 1$ and $u, v, w, x \in L_{p}$. If $1 \leq p \leq 2$, then

$$
\begin{equation*}
\|u-w\|_{p}^{2}+(p-1)\|x-v\|_{p}^{2} \leq\|u-v\|_{p}^{2}+\|v-w\|_{p}^{2}+\|x-w\|_{p}^{2}+\|u-x\|_{p}^{2} . \tag{5}
\end{equation*}
$$

If $p \geq 2$, then

$$
\begin{equation*}
\|u-w\|_{p}^{p}+\|x-v\|_{p}^{p} \leq 2^{p-2}\left(\|u-v\|_{p}^{p}+\|v-w\|_{p}^{p}+\|x-w\|_{p}^{p}+\|u-x\|_{p}^{p}\right) . \tag{6}
\end{equation*}
$$

Proof. The following inequalities are known for $a, b \in L_{p}$ (see, e.g. [3). If $1 \leq p \leq 2$, then

$$
\left\|\frac{a+b}{2}\right\|_{p}^{2}+(p-1)\left\|\frac{a-b}{2}\right\|_{p}^{2} \leq \frac{\|a\|_{p}^{2}+\|b\|_{p}^{2}}{2} .
$$

On the other hand, if $p \geq 2$, then

$$
\left\|\frac{a+b}{2}\right\|_{p}^{p}+\left\|\frac{a-b}{2}\right\|_{p}^{p} \leq \frac{\|a\|_{p}^{p}+\|b\|_{p}^{p}}{2}
$$

In both cases, the desired 4-point inequalities are obtained by averaging two incarnations of one of the above inequalities with $a=u-v, b=v-w$ and then $a=u-x, b=x-w$ and using convexity of the L_{p} norm (see, e.g. [12, Lem. 2.1]).

Lemma 3.8. Let G be a vertex transitive graph, and suppose $p>1$. If $q=\max \{p, 2\}$, then there exists a constant $K(p)>0$ such that the following holds. Let $f: V(\widetilde{G}) \rightarrow L_{p}$ be an injective mapping and define $\bar{f}: V(\widetilde{G}) \rightarrow L_{p}$ by

$$
\bar{f}(x)=\frac{1}{|\operatorname{Aut}(G)|^{1 / p}}(f(\widetilde{\pi} x))_{\pi \in \operatorname{Aut}(G)} .
$$

Suppose that β is such that for every $i \in[D+1]$, there exists a vertical edge $\left(u^{(i)}, v^{(i)}\right)$ which satisfies $\left\|\bar{f}\left(u^{(i)}\right)-\bar{f}\left(v^{(i)}\right)\right\|_{p} \geq \beta$. Then there exists a horizontal edge $(x, y) \in E(\widetilde{G})$ such that

$$
\begin{equation*}
\frac{\|\bar{f}(x)-\bar{f}(y)\|_{p}^{q}}{d_{\widetilde{G}}(x, y)^{q}} \geq \frac{\|f(s)-f(t)\|_{p}^{q}}{d_{\widetilde{G}}(s, t)^{q}}+K(p) \beta^{q} . \tag{7}
\end{equation*}
$$

Proof. Let $D=\operatorname{diam}(G)$. For simplicity, we assume that D is even in what follows.
(F1) $\|\bar{f}(s)-\bar{f}(t)\|_{p}=\|f(s)-f(t)\|_{p}$
(F2) For all $u, v \in V$,

$$
\begin{aligned}
\left\|\bar{f}(s)-\bar{f}\left(v^{(1)}\right)\right\|_{p} & =\left\|\bar{f}(s)-\bar{f}\left(u^{(1)}\right)\right\|_{p}, \\
\left\|\bar{f}(t)-\bar{f}\left(v^{(D+1)}\right)\right\|_{p} & =\left\|\bar{f}(t)-\bar{f}\left(u^{(D+1)}\right)\right\|_{p} .
\end{aligned}
$$

(F3) For every $u, v \in V, i \in[D]$,

$$
\left\|\bar{f}\left(v^{(i)}\right)-\bar{f}\left(v^{(i+1)}\right)\right\|_{p}=\left\|\bar{f}\left(u^{(i)}\right)-\bar{f}\left(u^{(i+1)}\right)\right\|_{p} .
$$

Fix some $r \in V$ and let $\rho_{0}=\left\|\bar{f}(s)-\bar{f}\left(r^{(1)}\right)\right\|_{p}, \rho_{i}=\left\|\bar{f}\left(r^{(2 i-1)}\right)-\bar{f}\left(r^{(2 i+1)}\right)\right\|_{p}$ for $i=1, \ldots, D / 2$, $\rho_{D / 2+1}=\left\|\bar{f}(t)-\bar{f}\left(r^{(D+1)}\right)\right\|_{p}$. Also let $\rho_{i, 1}=\left\|\bar{f}\left(r^{(2 i-1)}\right)-\bar{f}\left(r^{(2 i)}\right)\right\|_{p}$ and $\rho_{i, 2}=\| \bar{f}\left(r^{(2 i)}\right)-$ $\bar{f}\left(r^{(2 i+1)}\right) \|_{p}$ for $i=1, \ldots, D / 2$.

Note that, by (F2) and (F3) above, the values $\left\{\rho_{i}\right\}$ do not depend on the representative $r \in V$. In this case, we have

$$
\begin{equation*}
\sum_{i=0}^{D / 2+1} \rho_{i} \geq\|\bar{f}(s)-\bar{f}(t)\|_{p}=9 \gamma D \tag{8}
\end{equation*}
$$

where we put $\gamma=\frac{\|f(s)-f(t)\|_{p}}{d_{\widetilde{G}}(s, t)}$. Note that $\gamma>0$ since f is injective.
Let $\delta=\delta(p)$ be a constant to be chosen shortly. Recalling that $d_{\widetilde{G}}(s, t)=9 D$ and $d_{\widetilde{G}}\left(s, r^{(1)}\right)=$ $4 D$, observe that if $\rho_{0}^{q} \geq\left(1+\delta \frac{\beta^{q}}{\gamma^{q}}\right)(4 \gamma D)^{q}$, then

$$
\max \left(\frac{\left.\| \bar{f}(s)-\bar{f}\left(s^{\prime}\right)\right) \|_{p}^{q}}{d_{\widetilde{G}}\left(s, s^{\prime}\right)^{q}}, \frac{\left\|\bar{f}\left(s^{\prime}\right)-\bar{f}\left(r^{(1)}\right)\right\|_{p}^{q}}{d_{\widetilde{G}}\left(s^{\prime}, r^{(1)}\right)^{q}}\right) \geq \gamma^{q}+\delta \beta^{q}
$$

verifying (7). The symmetric argument holds for $\rho_{D / 2+1}$, thus we may assume that

$$
\rho_{0}, \rho_{D / 2+1} \leq 4 \gamma D\left(1+\delta \frac{\beta^{q}}{\gamma^{q}}\right)^{1 / q} \leq 4 \gamma D\left(1+\delta \frac{\beta^{q}}{\gamma^{q}}\right) .
$$

Similarly, we may assume that $\rho_{i, 1}, \rho_{i, 2} \leq \gamma\left(1+\delta \frac{\beta^{q}}{\gamma^{q}}\right)^{1 / q}$ for every $i \in[D / 2]$.
In this case, by (8), there must exist an index $j \in\{1,2, \ldots, D / 2\}$ such that

$$
\rho_{j} \geq\left(1-8 \delta \frac{\beta^{q}}{\gamma^{q}}\right) 2 \gamma .
$$

Now, consider a vertical edge $\left(u^{(2 j)}, v^{(2 j)}\right)$ with $\left\|f\left(u^{(2 j)}\right)-f\left(v^{(2 j)}\right)\right\|_{p} \geq \beta$. Also consider the vertices $v^{(2 j-1)}$ and $v^{(2 j+1)}$. We now replace the use of orthogonality ((F4) in Lemma 3.1) with Lemma 3.7.

We apply one of (5) or (6) of these two inequalities with $x=f\left(u^{(2 j)}\right), v=f\left(v^{(2 j)}\right), u=$ $f\left(v^{(2 j-1)}\right), w=f\left(v^{(2 j+1)}\right)$. In the case $p \geq 2$, we use (5) to conclude that

$$
\begin{aligned}
\left\|f\left(u^{(2 j)}\right)-f\left(v^{(2 j-1)}\right)\right\|_{p}^{p}+\left\|f\left(u^{(2 j)}\right)-f\left(v^{(2 j+1)}\right)\right\|_{p}^{p} & \geq 2^{-p+2} \rho_{j}^{p}+2^{-q+2} \beta^{p}-\rho_{j, 1}^{p}-\rho_{j, 2}^{p} \\
& \geq 2 \gamma^{p}+2^{-p+2} \beta^{p}-34 \delta p \beta^{p} .
\end{aligned}
$$

Thus choosing $\delta=\frac{2^{1-p}}{34 p}$ yields the desired result for one of $\left(u^{(2 j)}, v^{(2 j-1)}\right)$ or $\left(u^{(2 j)}, v^{(2 j+1)}\right)$.
In the case $1 \leq p \leq 2$, we use (6) to conclude that

$$
\left\|f\left(u^{(2 j)}\right)-f\left(v^{(2 j-1)}\right)\right\|_{p}^{2}+\left\|f\left(u^{(2 j)}\right)-f\left(v^{(2 j+1)}\right)\right\|_{p}^{2} \geq \rho_{j}^{2}+(p-1) \beta^{2}-\rho_{j, 1}^{2}-\rho_{j, 2}^{2} .
$$

A similar choice of δ again yields the desired result.

References

[1] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the Sparsest Cut. J. Amer. Math. Soc., 21(1):1-21, 2008.
[2] Y. Aumann and Y. Rabani. An $O(\log k)$ approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput., 27(1):291-301 (electronic), 1998.
[3] K. Ball, E. A. Carlen, and E. H. Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math., 115(3):463-482, 1994.
[4] S. Chawla, A. Gupta, and H. Räcke. An improved approximation to sparsest cut. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, 2005. ACM.
[5] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In 44th Symposium on Foundations of Computer Science, pages 534-543, 2003.
[6] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.), 43(4):439-561 (electronic), 2006.
[7] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding method for finite metrics. Geom. Funct. Anal., 15(4):839-858, 2005.
[8] T. J. Laakso. Plane with A_{∞}-weighted metric not bi-Lipschitz embeddable to \mathbb{R}^{N}. Bull. London Math. Soc., 34(6):667-676, 2002.
[9] U. Lang and C. Plaut. Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata, 87(1-3):285-307, 2001.
[10] J. R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In $S O D A$ '05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 92-101, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.
[11] J. R. Lee. Volume distortion for subsets of Euclidean spaces. Discrete Comput. Geom., 41(4):590-615, 2009.
[12] J. R. Lee and A. Naor. Embedding the diamond graph in L_{p} and dimension reduction in L_{1}. Geom. Funct. Anal., 14(4):745-747, 2004.
[13] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215-245, 1995.
[14] J. Matoušek. On embedding expanders into l_{p} spaces. Israel J. Math., 102:189-197, 1997.
[15] J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
[16] I. Newman and Y. Rabinovich. A lower bound on the distortion of embedding planar metrics into Euclidean space. Discrete Comput. Geom., 29(1):77-81, 2003.
[17] S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In Proceedings of the 15th Annual Symposium on Computational Geometry, pages 300-306, New York, 1999. ACM.

[^0]: *Research partially supported by NSF CCF-0644037 and a Sloan Research Fellowship.

