Abstract
We consider the problem of aligned coloring of interval and chordal graphs. These problems have substantial applications to register allocation in compilers and have recently been proven NP-Hard. We provide the first constant approximations: a \(\frac{4}{3}\)-approximation for interval graphs and a \(\frac{3}{2}\)-approximation for chordal graphs. We extend our techniques to the problem of minimizing spillage in these graph types.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahn, M., Lee, J., Paek, Y.: Optimistic coalescing for heterogeneous register architectures. SIGPLAN Not. 42(7), 93–102 (2007)
Briggs, P.: Register allocation via graph coloring. Technical Report TR92-183, Rice University (1998)
Briggs, P., Cooper, K., Torczon, L.: Coloring register pairs. Letters on Programming Languages 1(1), 3–13 (1992)
Briggs, P., Cooper, K.D., Kennedy, K., Torczon, L.: Coloring heuristics for register allocation. SIGPLAN Not. 39(4), 283–294 (2004)
Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register allocation. ACM Trans. Program. Lang. Syst. 16(3), 428–455 (1994)
Callahan, D., Koblenz, B.: Register allocation via hierarchical graph coloring. SIGPLAN Not. 26(6), 192–203 (1991)
Chaitin, G.J.: Register allocation and spilling via graph coloring. SIGPLAN Notices 17, 98–105 (1982)
Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)
Chow, F., Hennessy, J.: Register allocation by priority-based coloring. SIGPLAN Not. 19(6), 222–232 (1984)
Cooper, K., Torczon, L.: Engineering a Compiler. Morgan Kaufmann, San Francisco (2003)
Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)
Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. Siam Journal of Computing 1(2), 180–187 (1972)
Gupta, R., Soffa, M.L., Steele, T.: Register allocation via clique separators. In: PLDI 1989: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and implementation, pp. 264–274 (1989)
Hack, S., Goos, G.: Optimal register allocation for SSA-form programs in polynomial time. Information Processing Letters 98(4), 150–155 (2006)
Khot, S.: Improved inapproximability results for maxclique, chromatic number and approximate graph coloring. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 600–609 (2001)
Lee, J.K., Palsberg, J., Pereira, F.M.Q.: Aliased register allocation for straight-line programs is NP-complete. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 680–691. Springer, Heidelberg (2007)
Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs. In: Proceedings of the Asian Symposium on Programming Lanugages and Systems (APLAS), Tsukuba, Japan, pp. 315–329 (2005)
Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: Proceedings of the 2008 ACM SIGPLAN conference on Programming language design and implementation, pp. 216–226 (2008)
Rose, D.J., Tarjan, R.E.: Algorithmic aspects of vertex elimination. In: STOC 1975: Proceedings of seventh annual ACM symposium on Theory of computing, pp. 245–254 (1975)
Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring register allocation. In: Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and implementation, pp. 277–288 (2004)
Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters 24(2), 133–137 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carroll, D.E., Meyerson, A., Tagiku, B. (2009). Approximations for Aligned Coloring and Spillage Minimization in Interval and Chordal Graphs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-03685-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03684-2
Online ISBN: 978-3-642-03685-9
eBook Packages: Computer ScienceComputer Science (R0)