Skip to main content

Approximations for Aligned Coloring and Spillage Minimization in Interval and Chordal Graphs

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2009, RANDOM 2009)

Abstract

We consider the problem of aligned coloring of interval and chordal graphs. These problems have substantial applications to register allocation in compilers and have recently been proven NP-Hard. We provide the first constant approximations: a \(\frac{4}{3}\)-approximation for interval graphs and a \(\frac{3}{2}\)-approximation for chordal graphs. We extend our techniques to the problem of minimizing spillage in these graph types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahn, M., Lee, J., Paek, Y.: Optimistic coalescing for heterogeneous register architectures. SIGPLAN Not. 42(7), 93–102 (2007)

    Article  Google Scholar 

  2. Briggs, P.: Register allocation via graph coloring. Technical Report TR92-183, Rice University (1998)

    Google Scholar 

  3. Briggs, P., Cooper, K., Torczon, L.: Coloring register pairs. Letters on Programming Languages 1(1), 3–13 (1992)

    Article  Google Scholar 

  4. Briggs, P., Cooper, K.D., Kennedy, K., Torczon, L.: Coloring heuristics for register allocation. SIGPLAN Not. 39(4), 283–294 (2004)

    Article  Google Scholar 

  5. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register allocation. ACM Trans. Program. Lang. Syst. 16(3), 428–455 (1994)

    Article  Google Scholar 

  6. Callahan, D., Koblenz, B.: Register allocation via hierarchical graph coloring. SIGPLAN Not. 26(6), 192–203 (1991)

    Article  Google Scholar 

  7. Chaitin, G.J.: Register allocation and spilling via graph coloring. SIGPLAN Notices 17, 98–105 (1982)

    Article  Google Scholar 

  8. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)

    Article  Google Scholar 

  9. Chow, F., Hennessy, J.: Register allocation by priority-based coloring. SIGPLAN Not. 19(6), 222–232 (1984)

    Article  Google Scholar 

  10. Cooper, K., Torczon, L.: Engineering a Compiler. Morgan Kaufmann, San Francisco (2003)

    MATH  Google Scholar 

  11. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. Siam Journal of Computing 1(2), 180–187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gupta, R., Soffa, M.L., Steele, T.: Register allocation via clique separators. In: PLDI 1989: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and implementation, pp. 264–274 (1989)

    Google Scholar 

  14. Hack, S., Goos, G.: Optimal register allocation for SSA-form programs in polynomial time. Information Processing Letters 98(4), 150–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khot, S.: Improved inapproximability results for maxclique, chromatic number and approximate graph coloring. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 600–609 (2001)

    Google Scholar 

  16. Lee, J.K., Palsberg, J., Pereira, F.M.Q.: Aliased register allocation for straight-line programs is NP-complete. In: Arge, L., Cachin, C., JurdziÅ„ski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 680–691. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs. In: Proceedings of the Asian Symposium on Programming Lanugages and Systems (APLAS), Tsukuba, Japan, pp. 315–329 (2005)

    Google Scholar 

  18. Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: Proceedings of the 2008 ACM SIGPLAN conference on Programming language design and implementation, pp. 216–226 (2008)

    Google Scholar 

  19. Rose, D.J., Tarjan, R.E.: Algorithmic aspects of vertex elimination. In: STOC 1975: Proceedings of seventh annual ACM symposium on Theory of computing, pp. 245–254 (1975)

    Google Scholar 

  20. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring register allocation. In: Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and implementation, pp. 277–288 (2004)

    Google Scholar 

  21. Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters 24(2), 133–137 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carroll, D.E., Meyerson, A., Tagiku, B. (2009). Approximations for Aligned Coloring and Spillage Minimization in Interval and Chordal Graphs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics