Skip to main content

Sampling s-Concave Functions: The Limit of Convexity Based Isoperimetry

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5687))

Abstract

Efficient sampling, integration and optimization algorithms for logconcave functions [BV04, KV06, LV06a] rely on the good isoperimetry of these functions. We extend this to show that − 1/(n − 1)-concave functions have good isoperimetry, and moreover, using a characterization of functions based on their values along every line, we prove that this is the largest class of functions with good isoperimetry in the spectrum from concave to quasi-concave. We give an efficient sampling algorithm based on a random walk for − 1/(n − 1)-concave probability densities satisfying a smoothness criterion, which includes heavy-tailed densities such as the Cauchy density. In addition, the mixing time of this random walk for Cauchy density matches the corresponding best known bounds for logconcave densities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate, D., Kannan, R.: Sampling and integration of near log-concave functions. In: STOC 1991: Proceedings of the twenty-third annual ACM symposium on Theory of computing, pp. 156–163. ACM, New York (1991)

    Chapter  Google Scholar 

  2. Bobkov, S.G.: Large deviations and isoperimetry over convex probability measures with heavy tails. Electronic Journal of Probability 12, 1072–1100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borell, C.: Convex measures on locally convex spaces. Ark. Math. 12, 239–252 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borell, C.: Convex set functions in d-space. Periodica Mathematica Hungarica 6, 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  5. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM 51(4), 540–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dyer, M.E., Frieze, A.M.: Computing the volume of a convex body: a case where randomness provably helps. In: Proc. of AMS Symposium on Probabilistic Combinatorics and Its Applications, pp. 123–170 (1991)

    Google Scholar 

  7. Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Johnson, M.E.: Multivariate statistical simulation. Wiley, Chichester (1987)

    Book  MATH  Google Scholar 

  9. Kannan, R., Li, G.: Sampling according to the multivariate normal density. In: FOCS 1996: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 204. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  10. Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. J. Discr. Comput. Geom. 13, 541–559 (1995)

    Article  MATH  Google Scholar 

  11. Kannan, R., Lovász, L., Simonovits, M.: Random walks and an O *(n 5) volume algorithm for convex bodies. Random Structures and Algorithms 11, 1–50 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kalai, A., Vempala, S.: Simulated annealing for convex optimization. Math. Oper. Res. 31(2), 253–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lovász, L.: How to compute the volume? Jber. d. Dt. Math.-Verein, Jubiläumstagung 1990, 138–151 (1990)

    Google Scholar 

  14. Lovász, L., Simonovits, M.: On the randomized complexity of volume and diameter. In: Proc. 33rd IEEE Annual Symp. on Found. of Comp. Sci., pp. 482–491 (1992)

    Google Scholar 

  15. Lovász, L., Simonovits, M.: Random walks in a convex body and an improved volume algorithm. Random Structures and Alg 4, 359–412 (1993)

    Article  MATH  Google Scholar 

  16. Lovász, L., Vempala, S.: Fast algorithms for logconcave functions: Sampling, rounding, integration and optimization. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 57–68. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  17. Lovász, L., Vempala, S.: Hit-and-run from a corner. SIAM J. Computing 35, 985–1005 (2006)

    Article  MATH  Google Scholar 

  18. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an O *(n 4) volume algorithm. J. Comput. Syst. Sci. 72(2), 392–417 (2006)

    Article  MATH  Google Scholar 

  19. Lovász, L., Vempala, S.: The geometry of logconcave functions and sampling algorithms. Random Struct. Algorithms 30(3), 307–358 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandrasekaran, K., Deshpande, A., Vempala, S. (2009). Sampling s-Concave Functions: The Limit of Convexity Based Isoperimetry. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics