Skip to main content

Abstract

We explore the average-case “Vickrey” cost of structures in three random settings: the Vickrey cost of a shortest path in a complete graph or digraph with random edge weights; the Vickrey cost of a minimum spanning tree (MST) in a complete graph with random edge weights; and the Vickrey cost of a perfect matching in a complete bipartite graph with random edge weights. In each case, in the large-size limit, the Vickrey cost is precisely 2 times the (non-Vickrey) minimum cost, but this is the result of case-specific calculations, with no general reason found for it to be true.

Separately, we consider the problem of sparsifying a complete graph with random edge weights so that all-pairs shortest paths are preserved approximately. The problem of sparsifying a given graph so that for every pair of vertices, the length of the shortest path in the sparsified graph is within some multiplicative factor and/or additive constant of the original distance has received substantial study in theoretical computer science. For the complete digraph \({\vec{K}_n}\) with random edge weights, we show that whp Θ(n ln n) edges are necessary and sufficient for a spanning subgraph to give good all-pairs shortest paths approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avram, F., Bertsimas, D.: The minimum spanning tree constant in geometrical probability and under the independent model: a unified approach. Annals of Applied Probability 2, 113–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldous, D.: Asymptotics in the random assignment problem. Pr. Th. Related Fields 93, 507–534 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aldous, D.J.: The ζ(2) limit in the random assignment problem. Random Structures Algorithms 18(4), 381–418 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Archer, A., Tardos, É.: Frugal path mechanisms. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, January 06-08, 2002, pp. 991–999 (2002)

    Google Scholar 

  5. Archer, A., Tardos, É.: Frugal path mechanisms. ACM Trans. Algorithms 3(1), Art. 3, 22 (2007); MRMR2301829 (2008b:68013)

    Article  MathSciNet  Google Scholar 

  6. Clarke, E.H.: Multipart pricing of public goods. Public Choice 8, 17–33 (1971)

    Article  Google Scholar 

  7. Czumaj, A., Ronen, A.: On the expected payment of mechanisms for task allocation (extended abstract). In: Proceedings of the Fifth ACM Conference on Electronic Commerce, pp. 252–253 (2004)

    Google Scholar 

  8. Coppersmith, D., Sorkin, G.B.: Constructive bounds and exact expectations for the random assignment problem. Random Structures Algorithms 15(2), 113–144 (1999); MR2001j:05096

    Article  MathSciNet  MATH  Google Scholar 

  9. Elkind, E.: True costs of cheap labor are hard to measure: edge deletion and VCG payments in graphs. In: Proceedings of the Sixth ACM Conference on Electronic Commerce, pp. 108–117 (2005)

    Google Scholar 

  10. Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 694–702 (2004)

    Google Scholar 

  11. Flaxman, A., Gamarnik, D., Sorkin, G.B.: First-passage percolation on a width-2 strip and the path cost in a VCG auction. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 99–111. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-based mechanism for lowest-cost routing. In: PODC 2002: Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, pp. 173–182. ACM Press, New York (2002)

    Chapter  Google Scholar 

  13. Frieze, A.: On the value of a random minimum spanning tree problem. Discrete Applied Mathematics 10, 47–56 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Janson, S.: One, two, three logn/n for paths in a complete graph with random weights. Combinatorics, Probability and Computing 8, 347–361 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karger, D., Nikolova, E.: Brief announcement: on the expected overpayment of VCG mechanisms in large networks. In: PODC 2005: Proceedings of the 24th Annual ACM Symposium on Principles of Distributed Computing, pp. 126–126. ACM Press, New York (2005)

    Google Scholar 

  17. Linusson, S., Wästlund, J.: A proof of Parisi’s conjecture on the random assignment problem. Probability Theory and Related Fields 128, 419–440 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mézard, M., Parisi, G.: Replicas and optimization. J. Physique Lettres 46, 771–778 (1985)

    Article  Google Scholar 

  19. Mézard, M., Parisi, G.: Mean-field equations for the matching and the travelling salesman problems. Europhys. Lett. 2, 913–918 (1986)

    Article  Google Scholar 

  20. Mézard, M., Parisi, G.: On the solution of the random link matching problems. J. Physique Lettres 48, 1451–1459 (1987)

    Article  Google Scholar 

  21. Mihail, M., Papadimitriou, C., Saberi, A.: On certain connectivity properties of the Internet topology. In: FOCS 2003: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, Washington, DC, USA, p. 28. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  22. Nair, C., Prabhakar, B., Sharma, M.: Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures. Random Structures Algorithms 27(4), 413–444 (2005) MR MR2178256 (2006e:90050)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, United States, pp. 129–140 (1999)

    Google Scholar 

  24. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econom. Behav. 35(1-2), 166–196 (2001); Economics and artificial intelligence MR MR1822468 (2002a:68146)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parisi, G.: A conjecture on random bipartite matching, Physics e-Print archive (January 1998), http://xxx.lanl.gov/ps/cond-mat/9801176

  26. Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. Journal of Finance 16, 8–37 (1961)

    Article  Google Scholar 

  27. Wästlund, J.: An easy proof of the zeta(2) limit in the random assignment problem. Electronic Journal of Probability (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chebolu, P., Frieze, A., Melsted, P., Sorkin, G.B. (2009). Average-Case Analyses of Vickrey Costs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics