Abstract
Referring to the query complexity of property testing, we prove the existence of a rich hierarchy of corresponding complexity classes. That is, for any relevant function q, we prove the existence of properties that have testing complexity Θ(q). Such results are proven in three standard domains often considered in property testing: generic functions, adjacency predicates describing (dense) graphs, and incidence functions describing bounded-degree graphs. While in two cases the proofs are quite straightforward, the techniques employed in the case of the dense graph model seem significantly more involved. Specifically, problems that arise and are treated in the latter case include (1) the preservation of distances between graph under a blow-up operation, and (2) the construction of monotone graph properties that have local structure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Babai, L., Itai, A.: A fast and Simple Randomized Algorithm for the Maximal Independent Set Problem. J. of Algorithms 7, 567–583 (1986)
Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient Testing of Large Graphs. Combinatorica 20, 451–476 (2000)
Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Characterization of the Testable Graph Properties: It’s All About Regularity. In: 38th STOC, pp. 251–260 (2006)
Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Journal of Random structures and Algorithms 3(3), 289–304 (1992)
Alon, N., Shapira, A.: Every Monotone Graph Property is Testable. SIAM Journal on Computing 38, 505–522 (2008)
Benjamini, I., Schramm, O., Shapira, A.: Every Minor-Closed Property of Sparse Graphs is Testable. In: 40th STOC, pp. 393–402 (2008)
Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. JCSS 47(3), 549–595 (1993)
Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: 3CNF Properties Are Hard to Test. SIAM Journal on Computing 35(1), 1–21 (2005)
Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in bounded-degree graphs. In: 43rd FOCS, pp. 93–102 (2002)
Ergun, F., Kannan, S., Kumar, S.R., Rubinfeld, R., Viswanathan, M.: Spot-checkers. JCSS 60(3), 717–751 (2000)
Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)
Fischer, E., Matsliah, A.: Testing Graph Isomorphism. In: 17th SODA, pp. 299–308 (2006)
Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing Monotonicity. Combinatorica 20(3), 301–337 (2000)
Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM, 653–750 (July 1998)
Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy Theorems for Property Testing. ECCC, TR08-097 (2008)
Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorithmica 32(2), 302–343 (2002)
Goldreich, O., Ron, D.: A Sublinear Bipartitness Tester for Bounded Degree Graphs. Combinatorica 19(3), 335–373 (1999)
Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Structures and Algorithms 23(1), 23–57 (2003)
Lachish, O., Newman, I., Shapira, A.: Space Complexity vs. Query Complexity. Computational Complexity 17, 70–93 (2008)
Naor, J., Naor, M.: Small-bias Probability Spaces: Efficient Constructions and Applications. SIAM J. on Computing 22, 838–856 (1993)
Parnas, M., Ron, D., Rubinfeld, R.: Testing Membership in Parenthesis Laguages. Random Structures and Algorithms 22(1), 98–138 (2003)
Pikhurko, O.: An Analytic Approach to Stability (2009), http://arxiv.org/abs/0812.0214
Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J.D.P. (eds.) Handbook on Randomization, vol. II, pp. 597–649 (2001)
Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)
Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors. In: Current Trends in Theoretical Computer Science: The Challenge of the New Century. Algorithms and Complexity, vol. 1, pp. 67–95. World scientific, Singapore (2004); Preliminary version in Bulletin of the EATCS, vol. 77, pp. 67–95 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E. (2009). Hierarchy Theorems for Property Testing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-03685-9_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03684-2
Online ISBN: 978-3-642-03685-9
eBook Packages: Computer ScienceComputer Science (R0)