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Abstract

In 1990, E. Baum gave an elegant polynomial-time algorithm for learning the intersection of
two origin-centered halfspaces with respect to any symmetric distribution (i.e., any D such that
D(E) = D(−E)) [3]. Here we prove that his algorithm also succeeds with respect to any mean
zero distribution D with a log-concave density (a broad class of distributions that need not be
symmetric). As far as we are aware, prior to this work, it was not known how to efficiently learn
any class of intersections of halfspaces with respect to log-concave distributions.

The key to our proof is a “Brunn-Minkowski” inequality for log-concave densities that may
be of independent interest.



1 Introduction

A function f : R
n → R is called a linear threshold function or halfspace if f(x) = sgn(w · x) for

some vector w ∈ R
n. Algorithms for learning halfspaces from labeled examples are some of the

most important tools in machine learning.
While there exist several efficient algorithms for learning halfspaces in a variety of settings, the

natural generalization of the problem — learning the intersection of two or more halfspaces (e.g.,
the concept class of functions of the form h = f ∧ g where f and g are halfspaces) — has remained
one of the great challenges in computational learning theory.

In fact, there are no nontrivial algorithms known for the problem of PAC learning the intersec-
tion of just two halfspaces with respect to an arbitrary distribution. As such, several researchers
have made progress on restricted versions of the problem. Baum provided a simple and elegant
algorithm for learning the intersection of two origin-centered halfspaces with respect to any sym-
metric distribution on R

n [3]. Blum and Kannan [4] and Vempala [16] designed polynomial-time
algorithms for learning the intersection of any constant number of halfspaces with respect to the
uniform distribution on the unit sphere in R

n. Arriaga and Vempala [2] and Klivans and Servedio
[13] designed algorithms for learning a constant number of halfspaces given an assumption that the
support of the positive and negative regions in feature space are separated by a margin. The best
bounds grow with the margin γ like (1/γ)O(log(1/γ)).

1.1 Log-Concave Densities

In this paper, we significantly expand the classes of distributions for which we can learn intersections
of two halfspaces: we prove that Baum’s algorithm succeeds with respect to any mean zero, log-
concave probability distribution. We hope that this is a first step towards finding efficient algorithms
that can handle intersections of many more halfspaces with respect to a broad class of probability
distributions.

A distribution D is log-concave if it has a density f such that log f(·) is a concave function.
Log-concave distributions are a powerful class that capture a range of interesting scenarios: it is
known, for example, that the uniform distribution over any convex set is log-concave (if the convex
set is centered around the origin then the corresponding density has mean zero). Hence, Vempala’s
result mentioned above works for a very special case of log-concave distributions (it is not clear
whether his algorithm works for a more general class of distributions). Additionally, interest in
log-concave densities among machine learning researchers has been growing of late [10, 7, 1, 9, 14].

There has also been some recent work on learning intersections of halfspaces with respect to
the Gaussian distribution on R

n, another special case of a log-concave density. Klivans et al. have
shown how to learn (even in the agnostic setting) the intersection of a constant number of halfspaces
to any constant error parameter in polynomial-time with respect to any Gaussian distribution on
R

n [12]. Again, it is unclear how to extend their result to log-concave distributions.

1.2 Our approach: Re-analyzing Baum’s Algorithm

In this paper, we prove that Baum’s algorithm from 1990 succeeds when the underlying distribution
is not necessarily symmetric, but is log-concave.

Baum’s algorithm works roughly as follows. Suppose the unknown target concept C is the
intersection of the halfspace Hu defined by u · x ≥ 0 and the halfspace Hv defined by v · x ≥ 0.
Note that if x ∈ C then (u · x)(v · x) ≥ 0, so that

∑

ij

uivjxixj ≥ 0. (1)
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Figure 1: Baum’s algorithm for learning intersections of two halfspaces. (a) The input data, which
is labeled using an intersection of two halfspaces. (b) The first step is to find a halfspace containing
all the positive examples, and thus, with high probability, almost none of the reflection of the
target concept through the origin. (c) The next step is to find a quadratic threshold function
consistent with the remaining examples. (d) Finally, Baum’s algorithm outputs the intersection of
the halfspace found in step b and the classifier found in step c.

If we replace the original features x1, . . . , xn with all products xixj of pairs of features, this becomes
a linear inequality. The trouble is that (u ·x)(v ·x) is also positive if x ∈ −C, i.e., both u ·x ≤ 0 and
v · x ≤ 0. The idea behind Baum’s algorithm is to eliminate all the negative examples in −C by
identifying a region N in the complement of C (the “negative” region) that, with high probability,
includes almost all of −C. Then, he finds a halfspace in an expanded feature space that is consistent
with rest of the examples. (See Figure 1).

Baum finds N by finding a halfspace H ′ containing a large set of positive examples in C, and
then setting N = −H ′. Here is where he uses the assumption that the distribution is symmetric:
he reasons that if H ′ contains a lot of positive examples, then H ′ contains most of the measure of
C, and, since the distribution is symmetric, −H ′ contains most of the measure of −C. Then, if he
draws more examples and excludes those in −H ′, he is unlikely to obtain any examples in −C, and
for each example x that remains, (1) will hold only if and only if x ∈ C. The output hypothesis
classifies an example falling in N negatively, and uses the halfspace in the expanded feature space
to classify the remaining examples.

We extend Baum’s analysis by showing that, if the distribution is centered and log-concave,
then the probability of the region in −C that fails to be excluded by −H ′ is not much larger than
the probability of that part of C that is not covered by H ′. Thus, if H ′ is trained with somewhat
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more examples, the algorithm can still ensure that −H ′ fails to cover a small part of −C.
Thus, we arrive at the following natural problem from convex geometry: given a cone K whose

apex is at the origin in R
n, how does Pr(K) relate to Pr(−K) for distributions whose density is

log-concave? Were the distribution uniform over a convex set centered at the origin, we could use
the Brunn-Minkowski theory to argue that Pr(K) is always within a factor of n times Pr(−K) (see
Section 3). Instead, we are working with a mean zero log-concave distribution, and we do not know
of an analog of the Brunn-Minkowski inequality for log-concave densities. Instead, we make use of
the fact that the cones we are interested in are very simple and can be described by the intersection
of just three halfspaces, and show that Pr(K) is within a constant factor of Pr(−K). Proving this
makes use of tools for analyzing log-concave densities provided by Lovász and Vempala [14].

2 Preliminaries

2.1 VC Theory and sample complexity

We assume the reader is familiar with basic notions in computational learning theory such as
Valiant’s PAC model of learning and VC-dimension (see Kearns & Vazirani for an in-depth treat-
ment [11]).

Theorem 1 ([15, 6]). Let C be a class of concepts from the set X to {−1, 1} whose VC dimension
is d. Let c ∈ C, and suppose

M(ε, δ, d) = O

(

d

ε
log

1

ε
+

1

ε
log

1

δ

)

examples x1, . . . , xM are drawn according to any probability distribution D over X. Then, with
probability at least 1 − δ, any hypothesis h ∈ C that is consistent with c on x1, . . . , xM has error at
most ε w.r.t. D.

Lemma 2. The class of origin-centered halfspaces over R
n has VC dimension n.

Lemma 3. Let C be a class of concepts from the set X to {−1, 1}. Let X ′ be a subset of X, and
let C′ be the class of concepts in C restricted to X ′; in other words, let

C′ :=
{

c|X′

∣

∣ c ∈ C
}

.

Then, the VC dimension of C′ is at most the VC dimension of C.

2.2 Log-concave densities

Definition 4 (isotropic, log-concave). A probability density function f over R
n is log-concave if

log f(·) is concave. It is isotropic if the covariance matrix of the associated probability distribution
is the identity.

We will use a number of facts that were either stated by Lovász and Vempala, or are easy
consequences of their analysis.

Lemma 5 ([14]). Any halfspace containing the origin has probability at least 1/e under a log-concave
distribution with mean zero.

Lemma 6 ([14]). Suppose f is an isotropic log-concave probability density function over R
n, Then,

(a) f(0) ≥ 2−7n.

(b) f(0) ≤ n(20n)n/2.
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(c) f(x) ≥ 2−7n2−9n‖x‖ whenever 0 ≤ ‖x‖ ≤ 1/9.

(d) f(x) ≤ 28nnn/2 for every x ∈ R
n.

(e) For every line ℓ through 0,
∫

ℓ f(x) ≤ (n − 1)
(

20(n − 1)
)(n−1)/2

.

Proof. Parts a-d are immediate consequences of Theorem 5.14 of [14].
The proof of Part e is like the proof of an analogous lower bound in [14]. Change the basis

of R
n so that ℓ is the xn-axis, and let h be the marginal over the first n − 1 variables. Then, by

definition,

h(x1, . . . , xn−1) =

∫

ℓ
f(x1, . . . , xn−1, t) dt,

so that h(0) =
∫

ℓ f(x). Applying the inequality of Part b gives Part e.

3 Baum’s Algorithm

Let Hu and Hv be the two origin-centered halfspaces whose intersection we are trying to learn.
Baum’s algorithm for learning Hu ∩ Hv is as follows:

1. First, define

m1 := M(ε/2, δ/4, n2),

m2 := M
(

max{δ/(4eκm1), ε/2}, δ/4, n
)

, and

m3 := max{2m2/ε, (2/ε
2) log(4/δ)},

where κ is the constant that appears in Lemmas 8 and 9 below.
2. Draw m3 examples. Let r denote the number of positive examples observed. If r < m2, then

output the hypothesis that labels every point as negative. Otherwise, continue to the next
step.

3. Use linear programming to find an origin-centered halfspace H ′ that contains all r positive
examples.

4. Draw examples until we find a set S of m1 examples in H ′. (Discard examples in −H ′.)
Then, use linear programming to find a weight vector w ∈ R

n×n such that the hypothesis
hxor : R

n → {−1, 1} given by

hxor(x) := sgn

(

n
∑

i=1

n
∑

j=1

wi,jxixj

)

is consistent with all examples in S.
5. Output the hypothesis h : R

n → {−1, 1} given by

h(x) :=

{

hxor(x) if x ∈ H ′,

−1 otherwise.

Outline of proof. In Theorem 10, we prove that Baum’s algorithm learns Hu ∩ Hv in the PAC
model, when the distribution on R

n is log-concave and has mean zero. Here we give an informal
explanation of the proof. In step 3, the algorithm finds a halfspace H ′ that contains all but a small
fraction of the positive examples. In other words, Pr

(

Hu ∩Hv ∩ (−H ′)
)

is small. This implies that
points in −H ′ have a small chance of being positive, so we can just classify them as negative. To
classify points in H ′, the algorithm learns a hypothesis hxor in step 4. We must show that hxor
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is a good hypothesis for points in H ′. Under a log-concave distribution with mean zero, for any
intersection of three halfspaces, its probability mass is at most a constant times the probability of
its reflection about the origin; this is proved in Lemma 9. In particular,

Pr
(

(−Hu) ∩ (−Hv) ∩ H ′
)

≤ κPr
(

Hu ∩ Hv ∩ (−H ′)
)

(2)

for some constant κ > 0. Therefore, since Pr
(

Hu ∩ Hv ∩ (−H ′)
)

is small, we can conclude that
Pr
(

(−Hu)∩(−Hv)∩H ′
)

is also small. This implies that, with high probability, points in H ′ will not
lie in (−Hu)∩ (−Hv); thus, they must lie in Hu ∩Hv, Hu ∩ (−Hv), or (−Hu)∩Hv. Such points are
classified according to the symmetric difference Hu △ Hv restricted to H ′. (Strictly speaking, the
points are classified according to the negation of the concept Hu △Hv restricted to H ′; that is, we
need to invert the labels so that positive examples are classified as negative and negative examples
are classified as positive.) By Lemmas 2 and 3, together with the fact that hxor can be interpreted
as a halfspace over R

n2
, the class of such concepts has VC dimension at most n2. Hence, we can

use the VC Theorem to conclude that the hypothesis hxor has low error on points in H ′.
Now, we describe the strategy for proving (2). In Lemma 9, we prove that Pr(−R) ≤ κPr(R),

where R is the intersection of any three origin-centered halfspaces. This inequality holds when
the probability distribution is log-concave and has mean zero. First, we prove in Lemma 8 that
the inequality holds for the special case when the log-concave distribution not only has mean zero,
but is also isotropic. Then, we use Lemma 8 to prove Lemma 9. We consider Lemma 9 to be a
Brunn-Minkowski-type inequality for log-concave distributions (see the discussion after the proof
of Lemma 8).

To prove Lemma 8, we will exploit the fact that, if R is defined by an intersection of three
halfspaces, the probability of R is the same as the probability of R with respect to the marginal
distribution over examples projected onto the subspace of R

n spanned by the normal vectors of
the halfspaces bounding R — this is true, roughly speaking, because the dot products with those
normal vectors are all that is needed to determine membership in R, and those dot products are
not affected if we project onto the subspace spanned by those normal vectors. The same holds, of
course, for −R.

Once we have projected onto a 3-dimensional subspace, we perform the analysis by proving
upper and lower bounds on the probabilities of R and −R, and showing that they are within a
constant factor of one another. We analyze the probability of R (respectively −R) by decomposing
it into layers that are varying distances r from the origin. To analyze each layer, we will use upper
and lower bounds on the density of points at a distance r. Since the sizes (even the shapes) of the
regions at distance r are the same for R and −R, if the densities are close, then the probabilities
must be close.

Lemma 7 provides the upper bound on the density in terms of the distance (the lower bound
in Lemma 6c suffices for our purposes). We only need the bound in the case n = 3, but we go
ahead and prove a bound for all n. Kalai, Klivans, Mansour, and Servedio prove a one-dimensional
version in Lemma 6 of [9]. We adapt their proof to the n-dimensional case.

Lemma 7. Let f : R
n → R

+ be an isotropic, log-concave probability density function. Then,
f(x) ≤ β1e

−β2‖x‖ for all x ∈ R
n, where β1 := 28nnn/2e and β2 := 2−7n

2(n−1)(20(n−1))(n−1)/2 .

Proof. We first observe that if ‖x‖ ≤ 1/β2, then β1e
−β2‖x‖ ≥ β1e

−1 = 28nnn/2. By Lemma 6d,
f(x) ≤ β1e

−β2‖x‖ if ‖x‖ ≤ 1/β2. Now, assume there exists a point v ∈ R
n such that ‖v‖ > 1/β2 and

f(v) > β1e
−β2‖v‖. We shall show that this assumption leads to a contradiction. Let [0, v] denote

the line segment between the origin 0 and v. Every point x ∈ [0, v] can be written as a convex
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combination of 0 and v as follows: x =
(

1−‖x‖/‖v‖
)

0 +
(

‖x‖/‖v‖
)

v. Therefore, the log-concavity
of f implies that

f(x) ≥ f(0)1−‖x‖/‖v‖f(v)‖x‖/‖v‖.

We assumed that f(v) > β1e
−β2‖v‖. So Lemma 6a implies

f(x) >
(

2−7n
)1−‖x‖/‖v‖

β
‖x‖/‖v‖
1 e−β2‖x‖.

Because 2−7n ≤ 1 and 1−‖x‖/‖v‖ ≤ 1, we know that
(

2−7n
)1−‖x‖/‖v‖ ≥ 2−7n. Because β1 ≥ 1, we

know that β
‖x‖/‖v‖
1 ≥ 1. We can therefore conclude that f(x) > 2−7ne−β2‖x‖. Integrating over the

line ℓ through 0 and v, we get

∫

ℓ
f ≥

∫

[0,v]
f >

∫ ‖v‖

0
2−7ne−β2r dr =

2−7n

β2

(

1 − e−β2‖v‖
)

.

We assumed that ‖v‖ > 1/β2, so 1 − e−β2‖v‖ > 1 − e−1. Thus,

∫

ℓ
f >

2−7n

β2

(

1 − e−1
)

= 2
(

1 − e−1
)

(n − 1)
(

20(n − 1)
)(n−1)/2

.

Since 2
(

1 − e−1
)

> 1, we conclude that
∫

ℓ f > (n − 1)
(

20(n − 1)
)(n−1)/2

, but this contradicts
Lemma 6e.

Now we are ready for Lemma 8, which handles the isotropic case.

Lemma 8. Let R be the intersection of three origin-centered halfspaces in R
n. Assume that the

points in R
n are distributed according to an isotropic, log-concave probability distribution. Then,

Pr(−R) ≤ κPr(R) for some constant κ > 0.

Proof. Let u1, u2, and u3 be normals to the hyperplanes that bound the region R. Then,

R = {x ∈ R
n | u1 · x ≥ 0 and u2 · x ≥ 0 and u3 · x ≥ 0}.

Let U be the linear span of u1, u2, and u3. Choose an orthonormal basis (e1, e2, e3) for U and
extend it to an orthonormal basis (e1, e2, e3, . . . , en) for all of R

n. Write the components of the
vectors x, u1, u2, and u3 in terms of this basis:

x = (x1, x2, x3, x4, . . . , xn),

u1 = (u1,1, u1,2, u1,3, 0, . . . , 0),

u2 = (u2,1, u2,2, u2,3, 0, . . . , 0),

u3 = (u3,1, u3,2, u3,3, 0, . . . , 0).

Let projU (x) denote the projection of x onto U ; that is, let projU (x) := (x1, x2, x3). Likewise, let
projU (R) denote the projection of R onto U ; that is, let projU(R) := {projU (x) | x ∈ R}. Observe
that

x ∈ R ⇔ uj,1x1 + uj,2x2 + uj,3x3 ≥ 0 for all j ∈ {1, 2, 3} ⇔ projU (x) ∈ projU (R). (3)

Let f denote the probability density function of the isotropic, log-concave probability distribution
on R

n. Let g be the marginal probability density function with respect to (x1, x2, x3); that is, define

g(x1, x2, x3) :=

∫

· · ·
∫

Rn−3

f(x1, x2, x3, x4, . . . , xn) dx4 · · · dxn.
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Then, it follows from (3) that

Pr(R) =

∫

· · ·
∫

R

f(x1, x2, x3, x4, . . . , xn) dx1 · · · dxn =

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3.

Note that g is isotropic and log-concave, because the marginals of an isotropic, log-concave proba-
bility density function are isotropic and log-concave (see [14, Theorem 5.1, Lemma 5.2]). Therefore,
we can use Lemma 6c and Lemma 7 to bound g. The bounds don’t depend on the dimension n,
because g is a probability density function over R

3. For brevity of notation, let y := (x1, x2, x3).
By Lemma 6c, there exist constants κ1 and κ2 such that

g(y) ≥ κ1e
−κ2‖y‖ for ‖y‖ ≤ 1/9. (4)

And by Lemma 7, there exist constants κ3 and κ4 such that

g(y) ≤ κ3e
−κ4‖y‖ for all y ∈ R

3. (5)

Let R′ := projU (R) ∩ B(0, 1/9), where B(0, 1/9) denotes the origin-centered ball of radius 1/9 in
R

3. Use (4) and (5) to derive the following lower and upper bounds:
∫∫∫

R′

κ1e
−κ2‖y‖ dy1 dy2 dy3 ≤

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3 ≤
∫∫∫

projU (R)

κ3e
−κ4‖y‖ dy1 dy2 dy3. (6)

Recall that

Pr(R) =

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3.

Now, we transform the integrals in the lower and upper bounds in (6) to spherical coordinates.

The transformation to spherical coordinates is given by r :=
√

y2
1 + y2

2 + y2
3, ϕ := arctan

(

y2

y1

)

,

ϑ := arccos
(

y3√
y2
1+y2

2+y2
3

)

. The determinant of the Jacobian of the above transformation is known

to be r2 sin ϑ [5]. Thus (see [5]), inequality (6) becomes
∫∫∫

R′

κ1r
2e−κ2r sin ϑ dr dϕdϑ ≤ Pr(R) ≤

∫∫∫

projU (R)

κ3r
2e−κ4r sinϑdr dϕdϑ.

Let A denote the surface area of the intersection of projU (R) with the unit sphere S2; that is, let

A :=

∫∫

projU (R)∩S2

sin ϑ dϕdϑ.

Then, it follows that

A

∫ 1/9

0
κ1r

2e−κ2r dr ≤ Pr(R) ≤ A

∫ ∞

0
κ3r

2e−κ4rdr.

If we let

κ5 :=

∫ 1/9

0
κ1r

2e−κ2r dr and κ6 :=

∫ ∞

0
κ3r

2e−κ4r dr,

then κ5A ≤ Pr(R) ≤ κ6A. By symmetry, κ5A ≤ Pr(−R) ≤ κ6A. Therefore, it follows that
Pr(−R) ≤ (κ6/κ5) Pr(R).
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If the distribution were uniform over a convex set K whose centroid is at the origin, then the
proof of Lemma 8 could be modified to show that the probabilities of R and −R are within a factor
of n without requiring that R is the intersection of three halfspaces; we would only need that R is a
cone (closed under positive rescaling). This could be done by observing that the probability of R is
proportional to the average distance of a ray contained in R to the boundary of K. Then we could
apply the Brunn-Minkowski inequality (see [8, Lemma 29]) which states that for any direction x,
the distance from the origin to the boundary of K in the direction of x is within a factor n of the
distance to the boundary of K in the direction −x.

In Lemma 8, we assumed that the distribution is isotropic. The next lemma shows that this
assumption can be removed (provided that the mean of the distribution is still zero). A key insight
is that, under a linear transformation, the image of the intersection of three halfspaces is another
intersection of three halfspaces. To prove the lemma, we use a particular linear transformation
that brings the distribution into isotropic position. Then, we apply Lemma 8 to the transformed
distribution and the image of the three-halfspace intersection.

Lemma 9. Let R be the intersection of three origin-centered halfspaces in R
n. Assume that the

points in R
n are distributed according to a log-concave probability distribution with mean zero. Then,

Pr(−R) ≤ κPr(R), where κ is the same constant that appears in Lemma 8.

Proof. Let X be a random variable in R
n with a mean-zero, log-concave probability distribution.

Let V denote the convariance matrix of X. Let W be a matrix square root of the inverse of V ; that
is, W 2 = V −1. Then, the random variable Y := WX is log-concave and isotropic. (Technically,
if the rank of the convariance matrix V is less than n, then V would not be invertible. But,
in that case, the probability distribution degenerates into a probability distribution over a lower-
dimensional subspace. We just repeat the analysis on this subspace.) Let W (R) and W (−R)
respectively denote the images of R and −R under W . Notice that W (−R) = −W (R). Also,
notice that X ∈ R ⇔ Y ∈ W (R) and that X ∈ −R ⇔ Y ∈ W (−R) = −W (R). Let u1, u2, and
u3 be normals to the hyperplanes that bound R. Then,

W (R) =
{

Wx
∣

∣ x ∈ R
n and uT

j x ≥ 0 for all j ∈ {1, 2, 3}
}

=
{

y ∈ R
n
∣

∣ uT
j W−1y ≥ 0 for all j ∈ {1, 2, 3}

}

=
{

y ∈ R
n
∣

∣

(

(W−1)T uj

)T
y ≥ 0 for all j ∈ {1, 2, 3}

}

.

Therefore, W (R) is the intersection of three origin-centered halfspaces, so we can apply Lemma 8
to obtain

Pr(X ∈ −R) = Pr
(

Y ∈ −W (R)
)

≤ κPr
(

Y ∈ W (R)
)

= Pr(X ∈ R).

Finally, we analyze Baum’s algorithm using the probability bound given in Lemma 9.

Theorem 10. In the PAC model, Baum’s algorithm learns the intersection of two origin-centered
halfspaces with respect to any mean zero, log-concave probability distribution in polynomial time.

Proof. If the probability p of observing a positive example is less than ε, then the hypothesis that
labels every example as negative has error less than ε; so the algorithm behaves correctly if it draws
fewer than m2 positive examples in this case. If p ≥ ε, then by the Hoeffding bound,

Pr(r < m2) ≤ Pr

(

r

m3
<

ε

2

)

≤ Pr

(

r

m3
< p − ε

2

)

≤ e−m3ε2/2 ≤ δ/4.
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Thus, if p ≥ ε, then the probability of failing to draw at least m2 positive examples is at most
δ/4. For the rest of this proof, we shall assume that the algorithm succeeds in drawing at least m2

positive examples.
Observe that the hypothesis output by the algorithm has error

err(h) = Pr
(

−H ′
)

Pr
(

Hu ∩ Hv | −H ′
)

+ Pr
(

H ′
)

Pr
(

hxor(x) 6= c(x)
∣

∣ x ∈ H ′
)

, (7)

where c : R
n → {−1, 1} denotes the concept corresponding to Hu ∩ Hv. First, we give a bound for

Pr
(

−H ′
)

Pr
(

Hu ∩ Hv | −H ′
)

= Pr
(

Hu ∩ Hv ∩ (−H ′)
)

= Pr(Hu ∩ Hv) Pr
(

−H ′ | Hu ∩ Hv

)

.

Notice that Pr(−H ′ | Hu ∩ Hv) is the error of the hypothesis corresponding to H ′ over the distri-
bution conditioned on Hu ∩ Hv. But the VC Theorem works for any distribution, so, since H ′

contains every one of M
(

max{δ/(4eκm1), ε/2}, δ/4, n
)

random positive examples, it follows from
Lemma 2 that, with probability at least 1 − δ/4,

Pr
(

−H ′ | Hu ∩ Hv

)

≤ max

{

δ

4eκm1
,
ε

2

}

.

Since Pr(Hu ∩ Hv) ≤ 1, it follows that

Pr
(

Hu ∩ Hv ∩ (−H ′)
)

≤ max

{

δ

4eκm1
,
ε

2

}

.

Therefore, the left term in (7) is at most ε/2. All that remains is to bound the right term.
From Lemma 9, it follows that

Pr
(

(−Hu) ∩ (−Hv) ∩ H ′
)

≤ κPr
(

Hu ∩ Hv ∩ (−H ′)
)

≤ δ

4em1
.

By Lemma 5, Pr(H ′) ≥ 1/e. Therefore,

Pr
(

(−Hu) ∩ (−Hv)
∣

∣ H ′
)

=
Pr
(

(−Hu) ∩ (−Hv) ∩ H ′
)

Pr(H ′)
≤ δ

4m1
.

Thus, each of the m1 points in S has probability at most δ/4m1 of being in (−Hu) ∩ (−Hv), so
with probability at least 1− δ/4, none of the m1 points are in (−Hu)∩ (−Hv). Thus, each point in
x ∈ S lies in Hu∩Hv, Hu∩ (−Hv), or (−Hu)∩ (Hv); if x ∈ Hu∩Hv, then x is labeled as positive; if
x ∈ Hu ∩ (−Hv) or x ∈ (−Hu) ∩Hv, then x is labeled as negative. In other words, the points in S
are classified according to the negation of Hu △Hv restricted to the halfspace H ′. Thus, the linear
program executed in Step 4 successfully finds a classifier hxor consistent with the examples in S. By
Lemma 2 and Lemma 3, the class of symmetric differences of origin-centered halfspaces restricted
to H ′ has VC dimension at most n2. Therefore, the VC Theorem implies that, with probability at
least 1 − δ/4,

Pr
(

hxor(x) 6= c(x)
∣

∣ x ∈ H ′
)

≤ ε

2
.

Since Pr(H ′) ≤ 1, the right term in (7) is at most ε/2. Adding up the probabilities of the four
ways in which the algorithm can fail, we conclude that the probability that err(h) > ε is at most
4(δ/4) = δ.
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