Skip to main content

Baum’s Algorithm Learns Intersections of Halfspaces with Respect to Log-Concave Distributions

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2009, RANDOM 2009)

Abstract

In 1990, E. Baum gave an elegant polynomial-time algorithm for learning the intersection of two origin-centered halfspaces with respect to any symmetric distribution (i.e., any \({\mathcal D}\) such that \({\mathcal D}(E) = {\mathcal D}(-E)\)) [3]. Here we prove that his algorithm also succeeds with respect to any mean zero distribution \({\mathcal D}\) with a log-concave density (a broad class of distributions that need not be symmetric). As far as we are aware, prior to this work, it was not known how to efficiently learn any class of intersections of halfspaces with respect to log-concave distributions.

The key to our proof is a “Brunn-Minkowski” inequality for log-concave densities that may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., McSherry, F.: On spectral learning with mixtures of distributions. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS, vol. 3559, pp. 458–469. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Arriaga, R., Vempala, S.: An algorithmic theory of learning: Robust concepts and random projection. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS), pp. 616–623 (1999)

    Google Scholar 

  3. Baum, E.: A polynomial time algorithm that learns two hidden unit nets. Neural Computation 2(4), 510–522 (1990)

    Article  MathSciNet  Google Scholar 

  4. Blum, A., Kannan, R.: Learning an intersection of a constant number of halfspaces under a uniform distribution. Journal of Computer and System Sciences 54(2), 371–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum, E.K., Lototsky, S.V.: Mathematics of Physics and Engineering. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  6. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. JACM 36(4), 929–965 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caramanis, C., Mannor, S.: An inequality for nearly log-concave distributions with applications to learning. IEEE Transactions on Information Theory 53(3), 1043–1057 (2007)

    Article  MathSciNet  Google Scholar 

  8. Dunagan, J.D.: A geometric theory of outliers and perturbation. PhD thesis, MIT (2002)

    Google Scholar 

  9. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically learning halfspaces. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 11–20 (2005)

    Google Scholar 

  10. Kannan, R., Salmasian, H., Vempala, S.: The spectral method for general mixture models. In: Proceedings of the Eighteenth Annual Conference on Learning Theory (COLT), pp. 444–457 (2005)

    Google Scholar 

  11. Kearns, M., Vazirani, U.: An introduction to computational learning theory. MIT Press, Cambridge (1994)

    Google Scholar 

  12. Klivans, A., O’Donnell, R., Servedio, R.: Learning geometric concepts via Gaussian surface area. In: Proc. 49th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 541–550 (2008)

    Google Scholar 

  13. Klivans, A., Servedio, R.: Learning intersections of halfspaces with a margin. In: Proceedings of the 17th Annual Conference on Learning Theory, pp. 348–362 (2004)

    Google Scholar 

  14. Lovász, L., Vempala, S.: The geometry of logconcave functions and sampling algorithms. Random Structures and Algorithms 30(3), 307–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vapnik, V.: Estimations of dependences based on statistical data. Springer, Heidelberg (1982)

    Google Scholar 

  16. Vempala, S.: A random sampling based algorithm for learning the intersection of halfspaces. In: Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 508–513 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klivans, A.R., Long, P.M., Tang, A.K. (2009). Baum’s Algorithm Learns Intersections of Halfspaces with Respect to Log-Concave Distributions. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics