Skip to main content

Abstract

We revisit simultaneous Diophantine approximation, a classical problem from the geometry of numbers which has many applications in algorithms and complexity. The input to the decision version of this problem consists of a rational vector α ∈ ℚn, an error bound ε and a denominator bound N ∈ ℕ + . One has to decide whether there exists an integer, called the denominator Q with 1 ≤ Q ≤ N such that the distance of each number Q ·α i to its nearest integer is bounded by ε. Lagarias has shown that this problem is NP-complete and optimization versions have been shown to be hard to approximate within a factor n c/ loglogn for some constant c > 0. We strengthen the existing hardness results and show that the optimization problem of finding the smallest denominator Q ∈ ℕ +  such that the distances of Q·α i to the nearest integer are bounded by ε is hard to approximate within a factor 2n unless \({\textrm{P}} = {\rm NP}\).

We then outline two further applications of this strengthening: We show that a directed version of Diophantine approximation is also hard to approximate. Furthermore we prove that the mixing set problem with arbitrary capacities is NP-hard. This solves an open problem raised by Conforti, Di Summa and Wolsey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, W., Meng, J.: An improved lower bound for approximating shortest integer relation in \(l\sb \infty\) norm \(({\rm SIR}\sb \infty)\). Information Processing Letters 101(4), 174–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conforti, M., Di Summa, M., Wolsey, L.A.: The mixing set with flows. SIAM Journal on Discrete Mathematics 21(2), 396–407 (2007) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conforti, M., Summa, M.D., Wolsey, L.A.: The mixing set with divisible capacities. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 435–449. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Conforti, M., Zambelli, G.: The mixing set with divisible capacities: a simple approach (manuscript)

    Google Scholar 

  5. Dinur, I.: Approximating \({\rm SVP}\sb \infty\) to within almost-polynomial factors is NP-hard. Theoretical Computer Science 285(1), 55–71 (2000); Algorithms and complexity, Rome (2000)

    Article  MathSciNet  Google Scholar 

  6. Eisenbrand, F., Rothvoß, T.: Static-priority realtime-scheduling: Response time computation is NP-hard. In: RTSS 2008 (2008)

    Google Scholar 

  7. Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7, 49–65 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  9. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Mathematical Programming. A Publication of the Mathematical Programming Society 90(3, Ser. A), 429–457 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heath-Brown, D.R.: The number of primes in a short interval. Journal für die Reine und Angewandte Mathematik 389, 22–63 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Heath-Brown, D.R., Iwaniec, H.: On the difference between consecutive primes. American Mathematical Society. Bulletin. New Series 1(5), 758–760 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henk, M., Weismantel, R.: Diophantine approximations and integer points of cones. Combinatorica 22(3), 401–407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kannan, R.: Polynomial-time aggregation of integer programming problems. Journal of the Association for Computing Machinery 30(1), 133–145 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lagarias, J.C.: The computational complexity of simultaneous Diophantine approximation problems. SIAM Journal on Computing 14(1), 196–209 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Manders, K.L., Adleman, L.: NP-complete decision problems for binary quadratics. Journal of Computer and System Sciences 16(2), 168–184 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, A.J., Wolsey, L.A.: Tight formulations for some simple mixed integer programs and convex objective integer programs. Mathematical Programming 98(1-3, Ser. B), 73–88 (2003); Integer programming, Pittsburgh, PA (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Niven, I., Zuckerman, H.S., Montgomery, H.L.: An introduction to the theory of numbers, 5th edn. John Wiley & Sons Inc., New York (1991)

    Google Scholar 

  19. Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

    MATH  Google Scholar 

  20. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Rössner, C., Seifert, J.P.: Approximating good simultaneous Diophantine approximations is almost NP-hard. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 494–505. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  22. Zhao, M., de Farias Jr., I.R.: The mixing-MIR set with divisible capacities. Mathematical Programming. A Publication of the Mathematical Programming Society 115(1, Ser. A), 73–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenbrand, F., Rothvoß, T. (2009). New Hardness Results for Diophantine Approximation. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics