Abstract
A labelled transition system can be understood as a coalgebra for a particular endofunctor on the category of sets. Generalizing, we are led to consider coalgebras for arbitrary endofunctors on arbitrary categories.
Bisimulation is a crucial notion in the theory of labelled transition systems. We identify four definitions of bisimulation on general coalgebras. The definitions all specialize to the same notion for the special case of labelled transition systems. We investigate general conditions under which the four notions coincide.
As an extended example, we consider the semantics of name-passing process calculi (such as the pi-calculus), and present a new coalgebraic model for name-passing calculi.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S.: A domain equation for bisimulation. Inform. and Comput. 92, 161–218 (1991)
Abramsky, S.: A cook’s tour of the finitary non-well-founded sets. In: We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 1–18 (2005)
Aczel, P., Mendler, N.: A final coalgebra theorem. In: Proc. of CTCS 1989, pp. 357–365 (1989)
Adámek, J.: Introduction to coalgebra. Theory Appl. of Categ. 14(8), 157–199 (2005)
van den Berg, B., Marchi, F.D.: Models of non-well-founded sets via an indexed final coalgebra theorem. J. Symbolic Logic 72(3), 767–791 (2007)
Bezhanishvili, N., Fontaine, G., Venema, Y.: Vietoris bisimulations. J. Logic Comput. (2008) (to appear)
Borceux, F.: Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1994)
van Breugel, F., Hermida, C., Makkai, M., Worrell, J.B.: An accessible approach to behavioural pseudometrics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1018–1030. Springer, Heidelberg (2005)
Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to geometric morphisms I. Cah. Topol. Géom. Différ. Catég. XXXII(1), 47–95 (1991)
Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories. J. Pure Appl. Algebra 83, 145–158 (1993)
Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pacific J. Math. 82(1), 43–57 (1979)
Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for probabilistic systems. Inform. and Comput. 204(4), 503–523 (2006)
Ferrari, G., Montanari, U., Pistore, M.: Minimizing transition systems for name passing calculi: A co-algebraic formulation. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 129–158. Springer, Heidelberg (2002)
Fiore, M.P., Staton, S.: Comparing operational models of name-passing process calculi. Inform. and Comput. 204(4), 435–678 (2006)
Fiore, M.P., Staton, S.: A congruence rule format for name-passing process calculi from mathematical structural operational semantics. In: Proc. of LICS 2006, pp. 49–58 (2006)
Fiore, M.P., Turi, D.: Semantics of name and value passing (extended abstract). In: Proc. of LICS 2001, pp. 93–104 (2001)
Gabbay, M.J., Hofmann, M.: Nominal renaming sets. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 158–173. Springer, Heidelberg (2008)
Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2001)
Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras (pre)sheaves and named sets. Higher-Order Symb. Comput. 19(2–3), 283–304 (2006)
Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of mobile processes. In: Proc. of CMCS 2004, pp. 105–120 (2004)
Gumm, H.P.: Functors for coalgebras. Algebra Univers 45, 135–147 (2001)
Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inform. and Comput. 145(2), 107–152 (1998)
Jacobs, B., Rutten, J.: A tutorial on coalgebras and coinduction. EATCS Bulletin 62, 222–259 (1997)
Johnstone, P., Power, J., Tsujishita, T., Watanabe, H., Worrell, J.: On the structure of categories of coalgebras. Theoret. Comput. Sci. 260(1-2), 87–117 (2001)
Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, Oxford (2002)
Joyal, A., Moerdijk, I.: Algebraic Set Theory. Cambridge University Press, Cambridge (1995)
Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. J. Pure Appl. Algebra 89(1–2), 163–179 (1993)
Klin, B.: Adding recursive constructs to bialgebraic semantics. J. Log. Algebr. Program. 61, 259–286 (2004)
Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci. 327(1-2), 109–134 (2004)
Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-Maximilians-Universität München (2000)
Miculan, M., Yemane, K.: A unifying model of variables and names. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 170–186. Springer, Heidelberg (2005)
Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)
Milner, R.: Calculi for synchrony and asynchrony. Theoret. Comput. Sci. 25, 267–310 (1983)
Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inform. and Comput. 100(1), 1–77 (1992)
Plotkin, G.D.: Bialgebraic semantics and recursion (extended abstract). In: Proc. of CMCS 2001. Electron. Notes Theor. Comput. Sci, vol. 44(1), pp. 1–4 (2001)
Rutten, J.J.M.M.: Relators and metric bisimulations. In: Proc. of CMCS 1998. Electron. Notes Theor. Comput. Sci, vol. 11 (1998)
Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)
Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inform 33(1), 69–97 (1996)
Sangiorgi, D., Walker, D.: The π-calculus: a theory of mobile processes. Cambridge University Press, Cambridge (2001)
Staton, S.: Name-passing process calculi: operational models and structural operational semantics. PhD thesis, University of Cambridge (2007)
Staton, S.: General structural operational semantics through categorical logic. In: Proc. of LICS 2008, pp. 166–177 (2008)
Viglizzo, I.D.: Final sequences and final coalgebras for measurable spaces. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 395–407. Springer, Heidelberg (2005)
de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoret. Comput. Sci. 221, 271–293 (1999)
Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Staton, S. (2009). Relating Coalgebraic Notions of Bisimulation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-03741-2_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03740-5
Online ISBN: 978-3-642-03741-2
eBook Packages: Computer ScienceComputer Science (R0)