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Abstract. Fredkin’s Billiard Ball Model (BBM) is considered one of
the fundamental models of collision-based computing, and it is essentially
based on elastic collisions of mobile billiard balls. Moreover, fixed mirrors
or reflectors are brought into the model to deflect balls to complete the
computation. However, the use of fixed mirrors is “physically unrealistic”
and makes the BBM not perfectly momentum conserving from a physical
point of view, and it imposes an external architecture onto the computing
substrate which is not consistent with the concept of “architectureless”
in collision-based computing. In our initial attempt to reduce mirrors in
the BBM, we present a class of gates: the m-counting gate, and show
that certain circuits can be realized with few mirrors using this gate. We
envisage that our findings can be useful in future research of collision-
based computing in novel chemical and optical computing substrates.

1 Introduction

Collision-based computing [2] is an unconventional paradigm of computation,
where quanta of information are represented by compact patterns or local-
izations traveling in spatially-extended architectureless medium, such as bil-
liard balls in an idealized friction-free environment [9], gliders in cellular au-
tomata [5, 10, 1, 15], discrete solitons in optical waveguide lattices [6] and wave-
fragments in a sub-excitable Belousov–Zhabotinsky medium [12]. The informa-
tion is encoded in binary as the presence or absence of localizations corresponds
to logical 1 and 0. The computation is performed by mutual collisions of local-
izations. Trajectories of localizations approaching a collision site represent input
values; and trajectories of localizations traveling away from a collision site repre-
sent output values. Pre-determined stationary wires and gates are not needed in
collision-based computing. Anywhere within the medium space can be used as
wires (trajectories of traveling localizations) and gates (collective collision sites
of localizations).

Fredkin’s Billiard Ball Model [9] is one of the fundamental models of collision-
based computing and a model of universal physical computation, based on ideal-
ized elastic collisions of mobile billiard balls. Additionally, fixed mirrors are used
to route signals. As one may find that mirrors are almost unavoidable when re-
alizing complicated circuits in the BBM. However, there are several reasons we
want to remove mirrors from the model. First, as Margolus [11] stated, fixed mir-
rors are “physically unrealistic”, since in reality perfectly fixed mirrors “must be
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infinitely massive”, otherwise a sightly shift in position of a single mirror could
result in the model losing its “digital nature”. Second, from the collision-based
computing point of view, mirrors stand for external architecture onto the com-
puting medium. Although they are not stationary wires that signals propagate
along and the virtual wires formed by traveling balls are still dynamical, mirrors
are routing devices that control the moving directions of signals. Therefore the
model is not entirely architectureless. More importantly, for anyone who intends
to use the BBM as a blueprint to guide their research in collision-based comput-
ing using substrates in the real world, it may not be easy to look for an analogy
to mirrors.

Margolus [11] once successfully replaced mirrors with constant particle streams
together with the dual-rail logic to deflect signals in a lattice gas version of his
Soft Sphere Model (SSM, a model very similar to the BBM, with the difference
that balls are compressible during collisions), in an attempt to achieve momen-
tum conservation. Also, a concept of rest particle was introduced into the model
to fix the problem of signals crossing without mirrors. Obviously, the dual-rail
logic does not apply to the BBM, and the rest particle has no room in the BBM
simply because the BBM cannot be simulated by a lattice gas model. Thus
methods to remove mirrors in the SSM cannot be directed applied to the BBM.

In this paper, we present a class of gates: the m-counting gate. By using
the gate as building blocks, we demonstrate that certain circuits can be realized
in the BBM with few mirrors in place, which is one step closer to a physical
realistic, architectureless, and momentum conserving BBM. The structure of
the paper is as follows, we first review the BBM in Sect. 2. Then we introduce
the m-counting gate in Sect. 3, and demonstrate how we use such a gate to
realize binary adders and parallel binary counters in Sect. 4 and Sect. 5. As a
conclusion, we discuss the difference between the computational logic of the m-
counting gate and primitive gates in the BBM, and how our findings may benefit
the future research in Sect. 6.

2 The Billiard Ball Model

In the BBM, identical balls with finite diameter travel diagonally on a two-
dimensional grid with the same magnitude of velocity. Balls are all initially
placed on one of the dots of the grid, and the magnitude of their velocity is
specifically chosen so that balls can appear at diagonally adjacent dots at every
integer time (Fig. 1a). On two occasions balls can change their moving directions:
colliding against each other (Fig. 1b) and/or being deflected by a fixed mirror
(Fig. 1c). The diameter of balls is chosen to be the distance between two vertical
(or horizontal) adjacent dots of the grid and the fixed mirrors should be carefully
placed to ensure that collisions only happen when balls on one of the dots of the
grid. Binary information, 1 and 0, is encoded by the presence or the absence of a
ball at a given site of the grid at a given time. Therefore, trajectories of balls can
be seen as routes of traveling signals, or wires. The routing of signals and the
gates can be realized by collisions of balls (with the help of mirrors, sometimes).



(a) (b) (c)

Fig. 1. The Billiard Ball Model. (a) balls move diagonally on a two-dimensional
grid; (b) two balls collide and change their moving directions; (c) a ball moving
South-East is deflected by a fixed mirror and heads North-East instead. In these
graphs, arrows show moving directions of the balls, diagonal lines represent tra-
jectories that balls traveled and vertical lines indicate collisions, either between
two balls or between a ball and a mirror.
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Fig. 2. Primitive gates in the Billiard Ball Model: (a) the interaction gate, and
(b) the switch gate.



Two primitive gates were introduced in [9], namely, the interaction gate and
the switch gate (Fig. 2). The interaction gate is merely realized by a possible
collision of two balls. Fig. 2a shows a superposition of all possible trajectories
concerning the gate: when two balls start traveling from positions denoted by
small circles on the left, they will collide with each other; and if only one ball is
present at the starting positions, it will travel straight through. The switch gate
(Fig. 2b) is constructed on the basis of the interaction gate with two additional
mirrors. The output signals AB of the interaction gate are routed by mirrors
so that one of them falls into the same route as the ball AB̄, thus realizing the
switch gate. It has been demonstrated that both gates are capable of universal
computation.

Later works related to the BBM include a cellular automaton (BBMCA)
[10] that simulates the behavior described in the BBM and the Soft Sphere
Model [11], both developed by Margolus. Both models dealt with mirrors in
a different approach to the BBM. In the BBMCA, mirrors are formed by the
computing substrate itself, which is amazing because no external medium is
involved. However, when experimenting on real media, it is still hard to find an
analogy to the mirrors. In the SSM, especially in a lattice gas version of the
model, Margolus managed to remove all of the mirrors. In the BBM, maybe we
cannot remove them all, at least not until we find a way to overcome the problem
of signals crossing. But we can try to reduce mirrors to a minimum level, and
that is where the m-counting gate can help us in certain situations.

3 The m-counting Gate
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Fig. 3. The graphical realization of the m-counting gate in the Billiard Ball
Model, which can be used to count how many logical Truths there are in all m
input variables (a1...am).

The m-counting gate has m input variables (a1...am) and its function is to
count the number of logical Truths n out of all m input variables. A graphical



realization of the gate in the BBM is shown in Fig. 3, and realizations of three
simplest instances of the gate in the BBM are shown in Fig. 4.
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Fig. 4. Simplest examples of the m-counting gate in the Billiard Ball Model:
(a) the 1-counting gate, where c0 = ā1 and c1 = a1 (b) the 2-counting gate,
where c0 = ā1ā2, c1 = a1ā2 + ā1a2 and c2 = a1a2, and (c) the 3-counting gate,
where c0 = ā1ā2ā3, c1 = a1ā2ā3+ā1a2ā3+ā1ā2a3, c2 = a1a2ā3+a1ā2a3+ā1a2a3

and c3 = a1a2a3. Initial positions of input variables (a1...am) are represented
by circles and that of the constant Truth input T is represented by a dot.
Output variables include an exact copy of all input variables (a1...am) and a
single ball positioned at cn, denoting that there are n out of m input variables
being constant Truth.

Generally, realization of the m-counting gate in the BBM consists of m balls
(a1...am) as input variables moving in one direction, together with a ball T
representing a constant logical Truth moving in another direction. The gate
has 2m + 1 output variables, with m of which being an exact copy of all input
variables (a1...am) and other m + 1 output variables (c0...cm). The traveling
routes of the output variables are solely determined by the input balls, with
a1...am moving one line to the South of their original traveling routes. The route
of c0 is always the same as the constant Truth ball T , and routes of c1...cm are 1
to m lines to the North of c0. Among these m+1 output variables (c0...cm), only
one of them, cn, equals to logical Truth, showing the result of the m-counting
gate. Depending on the number of input variable balls being logical Truth:
n, exactly n collisions will happen during the computation, starting from the
constant Truth ball T dynamically deflects the first ball it encounters. After
each collision, the ball moving North-East changes its traveling route one line
higher, as it would have done in a normal interaction gate 2a, so that after n
collisions, the output variable cn = 1. If there is no ball to deflect at all, the ball
T remains its traveling route so that the output variable c0 = 1.
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Fig. 5. Multiple m-counting gate in the Billiard Ball Model: (a) two 3-counting
gates generate two sets of outputs (c0...c3); (b) move the constant Truth balls
closer may generate outputs such as c3 + c1, c2 + c0; (c) however, to produce
outputs in the form of cn + cn−1 needs the help of mirrors.



The feature of the m-counting gate that an exact copy of input variables is
included in its output variables allows us to generate multiple instances of output
variables (c0...cm) with only one set of input variables (a1...a3) and multiple in-
stances of the constant Truth balls. As illustrated in Fig. 5a, the input variables
(a1...a3) interact with the first constant Truth ball T1 and generate a set of
output variables (c0...c3), together with a copy of the input variables (a1...a3),
which in turn interact with the second constant Truth ball T2, generating a
second set of (c0...c3) as well as a copy of (a1...a3) again.

Relative positions of the multiple instances of output variables (c0...cm) are
determined by relative positions of the constant Truth balls. Thus by adjust-
ing relative positions of adjacent constant Truth balls, we can perform logical
disjunction operation on certain output variables (c0...cm). As shown in Fig. 5b,
while T1 and T2 move closer, traveling routes of the two sets of output variables
(c0...c3) overlap, resulting in two outputs c3 + c1 and c2 + c0.

Since constant Truth balls cannot be too close to be next to each other,
we cannot generate outputs in the form of cn + cn−1 directly. To do that, we
need to use a mirror, as illustrated in Fig. 5c. Again, two constant Truth balls
are used, producing two set of output variables (c0...c3). The mirror is placed
to deflect one of the balls representing c2 (the top one), which then collide with
the other ball representing c2 (the bottom one) and its traveling route end up
the same as a ball representing c3, resulting in an output c3 + c2.

4 Binary Adders

The m-counting gate is very helpful in realizing binary adders with few mirrors
or even no mirrors at all in the BBM. The simplest binary adder, the 1-bit
half adder, resides in the 2-counting gate (Fig. 4b), with two input variables a1

and a2 being summands and the output variables c1 and c2 equal the Sum and
Carry value of the 1-bit half adder respectively. This circuit is constructed with
no mirrors. Imagine if we were to build the same circuit using only interaction
gates, there would have been no way to generate the Sum value without using
fixed mirrors.

The binary 1-bit full adder, can be realized by four 3-counting gates and one
extra mirror in the BBM, as illustrated in Fig. 6. It is actually a combination
of the circuits in Fig. 5b and 5c, since if we consider input variables (a1...a3)
as two summands and the Carry-in value of the adder, then the Sum value
S = c3 + c1 and the Carry-out value Cout = c3 + c2.

5 Parallel Binary (m,k)-counters

The concept of parallel binary (m,k)-counters was first introduced by Dadda [7]
to construct parallel multipliers in 1965. An (m,k)-counter has m input vari-
ables, and it counts the number of input variables being logical Truths: n. This
concept is very similar to the above m-counting gates, with the difference that
in (m,k)-counters the result n is recorded using k-bit binary numbers.
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Fig. 6. The realization of a binary 1-bit full adder using four 3-counting gates
and a fixed mirror in the Billiard Ball Model



Three of the simplest instances of (m,k)-counters: (1,1)-counter, (2,2)-counter
and (3,2)-counter are already realized in previous sections, since they are equiva-
lent to the 1-counting gate (Fig. 4a), the 2-counting gate (Fig. 4b) and the 1-bit
full adder (Fig. 6).
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Fig. 7. A realization of the (5,3)-counter in the Billiard Ball Model, which uses
five 5-counting gates and two fixed mirrors.

Here we demonstrate a realization of the (5,3)-counter (Fig. 7), where the
counting result n is recorded in a 3-bit binary number: n3n2n1. The realization
uses the same techniques that are used in the 1-bit full adder. First, three 5-
counting gates are used to producing an output of n1 = c1 +c3 +c5 by arranging
three constant Truth balls in close distances. Then, two sets of output variables
(c0...c5) are generated by another two 5-counting gates, followed by the pairs of
c4s and c2s colliding between themselves, producing the outputs of n2 = c2 + c3

and n3 = c4 + c5.



Other (m,k)-counters (m ≥ 6) can also use m-counting gates as building
blocks, however, more mirrors may be placed to route signals in order to avoid
unwanted collisions.

6 Discussions

The m-counting gate reveals one of the underlying logic naturally existing in the
BBM. Thus we can build certain circuits without recourse to lots of fixed mirrors,
which is not possible when using only primitive gates — the interaction gate and
the switch gate. Although primitive gates are capable of universal computation,
they do not naturally support disjunction operation or conjunction operation
on more than two operands, which is why we often need multiple instances of
such gates to realize a circuit and why we need a great many fixed mirrors to
route signals. The switch gate itself is actually a good example of using mirrors
to perform a disjunction operation.

On the contrary, the m-counting gate produces outputs with several con-
junction and disjunction operations on the inputs, avoiding those mirrors that
may have been needed if we use primitive gates. Take the realization of parallel
binary counters, for example, as described by Swartzlander [13], conventionally
an (m,k)-counter is implemented using a two-level gate network, which consists
of 2m-1 AND gates with m inputs as well as k OR gates with 2m-1 inputs. The
m-counting gate do not build circuits from the simplest AND gates and OR gates,
rather, some of those two-level gate networks are outputs of the m-counting gate.

The m-counting gate has its limitation. First, though it is suitable as the
building blocks to construct binary adders and parallel binary counters, it may
not be that efficient when used to build other circuits. Second, the m-counting
gate produce many outputs, and not all of them may be useful in constructing
other circuits. Thus those signals that are no use can turn into obstacles and need
to be clear out of the space, which may need more fixed mirrors. Nonetheless, we
present a new way of exploit the Billiard Ball Model and the m-counting gate
shows us some insights into how the BBM can compute in its natural fashion
without mirrors.

We envisage that our findings can be useful in future research of collision-
based computing since the BBM is used as a blueprint of computing schemes
in novel computing substrates, for example, the light-sensitive sub-excitable
Belousov–Zhabotinsky (BZ) medium. Adamatzky, de Lacy Costello and their
colleagues have demonstrated both computationally and experimentally that
mutual collisions of wave-fragments in the sub-excitable BZ medium can imple-
ment certain logical gates and basic operations [3, 8, 4, 14]. Further research in
constructing complex circuits may require the implementation of “mirrors” by
adjusting light intensity to control the traveling directions of wave-fragments,
while our findings in the present paper show another approach to continue the
research.
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