Abstract
Run time distributions or time-to-target plots are very useful tools to characterize the running times of stochastic algorithms for combinatorial optimization. We further explore run time distributions and describe a new tool to compare two algorithms based on stochastic local search. For the case where the running times of both algorithms fit exponential distributions, we derive a closed form index that gives the probability that one of them finds a solution at least as good as a given target value in a smaller computation time than the other. This result is extended to the case of general run time distributions and a numerical iterative procedure is described for the computation of the above probability value. Numerical examples illustrate the application of this tool in the comparison of different algorithms for three different problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Feo, T., Resende, M., Smith, S.: A greedy randomized adaptive search procedure for maximum independent set. Operations Research 42, 860–878 (1994)
Hoos, H., Stützle, T.: On the empirical evaluation of Las Vegas algorithms - Position paper. Technical report, Computer Science Department, University of British Columbia (1998)
Hoos, H., Stützle, T.: Evaluation of Las Vegas algorithms - Pitfalls and remedies. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 238–245 (1998)
Aiex, R., Resende, M., Ribeiro, C.: Probability distribution of solution time in GRASP: An experimental investigation. Journal of Heuristics 8, 343–373 (2002)
Dodd, N.: Slow annealing versus multiple fast annealing runs: An empirical investigation. Parallel Computing 16, 269–272 (1990)
Eikelder, H.T., Verhoeven, M., Vossen, T., Aarts, E.: A probabilistic analysis of local search. In: Osman, I., Kelly, J. (eds.) Metaheuristics: Theory and Applications, pp. 605–618. Kluwer, Dordrecht (1996)
Hoos, H.: On the run-time behaviour of stochastic local search algorithms for SAT. In: Proc. AAAI 1999, pp. 661–666. MIT Press, Cambridge (1999)
Hoos, H., Stützle, T.: Towards a characterisation of the behaviour of stochastic local search algorithms for SAT. Artificial Intelligence 112, 213–232 (1999)
Osborne, L., Gillett, B.: A comparison of two simulated annealing algorithms applied to the directed Steiner problem on networks. ORSA Journal on Computing 3, 213–225 (1991)
Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the AAAI 1994, pp. 337–343. MIT Press, Cambridge (1994)
Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17, 443–455 (1991)
Verhoeven, M., Aarts, E.: Parallel local search. Journal of Heuristics 1, 43–66 (1995)
Hoos, H., Stützle, T.: Some surprising regularities in the behaviour of stochastic local search. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 470. Springer, Heidelberg (1998)
Aiex, R., Resende, M., Ribeiro, C.: TTTPLOTS: A perl program to create time-to-target plots. Optimization Letters 1, 355–366 (2007)
Ribeiro, C., Rosseti, I.: Efficient parallel cooperative implementations of GRASP heuristics. Parallel Computing 33, 21–35 (2007)
Li, Y., Pardalos, P., Resende, M.: A greedy randomized adaptive search procedure for the quadratic assignment problem. In: Pardalos, P., Wolkowicz, H. (eds.) Quadratic Assignment and Related Problems. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 16, pp. 237–261. American Mathematical Society, Providence (1994)
Resende, M., Ribeiro, C.: A GRASP for graph planarization. Networks 29, 173–189 (1997)
Resende, M., Pitsoulis, L., Pardalos, P.: Fortran subroutines for computing approximate solutions of MAX-SAT problems using GRASP. Discrete Applied Mathematics 100, 95–113 (2000)
Resende, M.: Computing approximate solutions of the maximum covering problem using GRASP. Journal of Heuristics 4, 161–171 (1998)
Canuto, S., Resende, M., Ribeiro, C.: Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)
Resende, M., Ribeiro, C.: GRASP with path-relinking: Recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 29–63. Springer, Heidelberg (2005)
Aiex, R., Pardalos, P., Resende, M., Toraldo, G.: GRASP with path relinking for three-index assignment. INFORMS Journal on Computing 17, 224–247 (2005)
Santos, L., Martins, S., Plastino, A.: Applications of the DM-GRASP heuristic: A survey. International Transactions in Operational Research 15, 387–416 (2008)
Fonseca, E., Fuchsuber, R., Santos, L., Plastino, A., Martins, S.: Exploring the hybrid metaheuristic DM-GRASP for efficient server replication for reliable multicast. In: International Conference on Metaheuristics and Nature Inspired Computing, Hammamet (2008)
Noronha, T., Ribeiro, C.: Routing and wavelength assignment by partition coloring. European Journal of Operational Research 171, 797–810 (2006)
Manohar, P., Manjunath, D., Shevgaonkar, R.: Routing and wavelength assignment in optical networks from edge disjoint path algorithms. IEEE Communications Letters 5, 211–213 (2002)
Hyytiã, E., Virtamo, J.: Wavelength assignment and routing in WDM networks. In: Nordic Teletraffic Seminar 14, pp. 31–40 (1998)
Dahl, G., Johannessen, B.: The 2-path network problem. Networks 43, 190–199 (2004)
Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249. Kluwer, Dordrecht (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ribeiro, C.C., Rosseti, I., Vallejos, R. (2009). On the Use of Run Time Distributions to Evaluate and Compare Stochastic Local Search Algorithms. In: Stützle, T., Birattari, M., Hoos, H.H. (eds) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2009. Lecture Notes in Computer Science, vol 5752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03751-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-03751-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03750-4
Online ISBN: 978-3-642-03751-1
eBook Packages: Computer ScienceComputer Science (R0)