Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5752))

Abstract

Stochastic local search algorithms can now successfully solve MAXSAT problems with thousands of variables or more. A key to this success is how effectively the search can navigate and escape plateau regions. Furthermore, the solubility of a problem depends on the size and exit density of plateaus, especially those closest to the optimal solution. In this paper we model the plateau phenomenon as a percolation process on hypercube graphs. We develop two models for estimating bounds on the size of plateaus and prove that one is a lower bound and the other an upper bound on the expected size of plateaus at a given level. The models’ accuracy is demonstrated on controlled random hypercube landscapes. We apply the models to MAXSAT through analogy to hypercube graphs and by introducing an approach to estimating, through sampling, a key parameter of the models. Using this approach, we assess the accuracy of our bound estimations on uniform random and structured benchmarks. Surprisingly, we find similar trends in accuracy across random and structured problem instances. Less surprisingly, we find a high accuracy on smaller plateaus with systematic divergence as plateaus increase in size.

This research was sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number FA9550-08-1-0422. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gent, I.P., Walsh, T.: An empirical analysis of search in GSAT. Journal of Artificial Intelligence Research 1, 47–59 (1993)

    MATH  Google Scholar 

  2. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of AAAI 1992, San Jose, CA (1992)

    Google Scholar 

  3. Mastrolilli, M., Gambardella, L.M.: How good are tabu search and plateau moves in the worst case? European Journal of Operations Research 166, 63–76 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: Local search topology. Journal of Artificial Intelligence Research 7, 249–281 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Hampson, S., Kibler, D.: Plateaus and plateau search in boolean satisfiability problems: When to give up searching and start again. DIMACS Series in Discrete Math and Theoretical Computer Science 26, 437–453 (1993)

    MATH  Google Scholar 

  6. Yokoo, M.: Why adding more constraints makes a problem easier for hill-climbing algorithms: Analyzing landscapes of CSPs. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 356–370. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Hoos, H.H., StĂĽtzle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  8. Smyth, K.R.G.: Understanding stochastic local search algorithms: An empirical analysis of the relationship between search space structure and algorithm behaviour. Master’s thesis, University of British Columbia (2004)

    Google Scholar 

  9. Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Applied Mathematics and Computation 117, 321–350 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Reidys, C., Stadler, P., Schuster, P.: Generic properties of combinatory maps and neutral networks of RNA secondary structures. Bull. Math. Biol. 59, 339–397 (1997)

    Article  MATH  Google Scholar 

  11. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Routledge, New York (1991)

    MATH  Google Scholar 

  12. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: a case study in RNA secondary structures. In: Proceedings of the Royal Society London B, vol. 255, pp. 279–284 (1994)

    Google Scholar 

  13. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Johnson, D.S., Trick, M.A. (eds.) DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. AMS, Providence (1996)

    Google Scholar 

  14. Gent, I., Walsh, T.: Unsatisfied variables in local search. In: Hallam, J. (ed.) Hybrid Problems, Hybrid Solutions, pp. 73–85. IOS Press, Amsterdam (1995)

    Google Scholar 

  15. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  16. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A portfolio approach to algorithm selection. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2003 (2003)

    Google Scholar 

  17. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sutton, A.M., Howe, A.E., Whitley, L.D. (2009). Estimating Bounds on Expected Plateau Size in MAXSAT Problems. In: StĂĽtzle, T., Birattari, M., Hoos, H.H. (eds) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2009. Lecture Notes in Computer Science, vol 5752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03751-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03751-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03750-4

  • Online ISBN: 978-3-642-03751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics