Abstract
In this paper we propose a new method for link-based classification using Bayesian networks. It can be used in combination with any content only probabilistic classsifier, so it can be useful in combination with several different classifiers. We also report the results obtained of its application to the XML Document Mining Track of INEX’08.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Probabilistic Methods for Structured Document Classification at INEX 2007. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 195–206. Springer, Heidelberg (2008)
Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40(1), 64–69 (2006)
Denoyer, L., Gallinari, P.: Report on the XML mining track at INEX 2007 categorization and clustering of XML documents. SIGIR Forum 42(1), 22–28 (2008)
Sen, P., Getoor, L.: Link-based Classification, Technical Report CS-TR-4858, University of Maryland, Number CS-TR-4858 - February 2007 (2007)
Platt, J.: Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In: Smola, A., Bartlett, P., Scholkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers. MIT Press, Cambridge (1999)
Yang, Y., Slattery, S.: A study of approaches to hypertext categorization. Journal of Intelligent Information Systems 18, 219–241 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E. (2009). Probabilistic Methods for Link-Based Classification at INEX 2008. In: Geva, S., Kamps, J., Trotman, A. (eds) Advances in Focused Retrieval. INEX 2008. Lecture Notes in Computer Science, vol 5631. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03761-0_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-03761-0_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03760-3
Online ISBN: 978-3-642-03761-0
eBook Packages: Computer ScienceComputer Science (R0)