Skip to main content

Accurate 3D Modelling by Fusion of Potentially Reliable Active Range and Passive Stereo Data

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 2362 Accesses

Abstract

Possibilities of more accurate digital modelling of 3D scenes by fusing 3D range data from an active hand-held laser scene scanner developed in IRL and passive stereo data from stereo pairs of images of the scene collected during the scanning process are discussed. Complementary properties of two data sources allow for improving a 3D model by checking reliability of active range data and using it to adaptively guide passive stereo reconstruction. Experiments show that this avenue of the data fusion offers good prospects of error detection and correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knoll, A., Schröder, R., Wolfram, A.: Generation of dense range maps by data fusion from active and passive colour stereo vision. In: Proc. 1996 IEEE/SICE/RSJ Int. Conf. Multisensor Fusion and Integration for Intelligent Systems (MFI 1996), Washington, USA, December 1996, pp. 410–415 (1996)

    Google Scholar 

  2. Scherba, D., Bajscy, P.: Depth Estimation by Fusing Stereo and Wireless Sensor Locations. Technical Report alg04-005, Automated Learning Group, National Center for Supercomputing Applications, Champaign, IL 61820 (December 12, 2004)

    Google Scholar 

  3. Kim, M.Y., Lee, H., Cho, H.: Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision. Applied Optics 47, 1927–1939 (2008)

    Article  Google Scholar 

  4. Biber, P., Fleck, S., Duckett, T.: 3d modeling of indoor environments for a robotic security guard. In: Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition - Workshops, Advanced 3D Imaging for Safety and Security (SafeSecur 2005), San Diego, CA, USA, June 20-25, vol. III, pp. 124–124 (2005)

    Google Scholar 

  5. Curtis, P., Yang, C.S., Payeur, P.: An integrated robotic multi-modal range sensing system. In: Proc. Instrumentation and Measurement Technology Conf. (IMTC 2005), Ottawa, Canada, May 2005, pp. 1991–1996 (2005)

    Google Scholar 

  6. Kuhnert, K., Stommel, M.: Fusion of stereo-camera and pmd-camera data for real-time suited precise 3d environment reconstruction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 2006, pp. 4780–4785 (2006)

    Google Scholar 

  7. Morgenthaler, D., Hennessy, S., DeMenthon, D.: Range-video fusion and comparison of inverse perspective algorithms in static images. IEEE Transactions on Systems, Man, and Cybernetics SMC-20(6), 1301–1312 (1990)

    Article  Google Scholar 

  8. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006)

    Google Scholar 

  9. Perrollaz, M., Labayrade, R., Royere, C., Hautiere, N., Aubert, D.: Long range obstacle detection using laser scanner and stereovision. In: Proceedings of the IEEE Intelligent Vehicles Symposium, Tokyo, Japan, June 2006, pp. 182–187 (2006)

    Google Scholar 

  10. Zhu, J., Wang, L., Yang, R., Davis, J.: Fusion of time-of-flight depth and stereo for high accuracy depth maps. In: Proc. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, Alaska, USA, June 24-26, pp. 1–8. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  11. Valkenburg, R.J., Penman, D.W., Schoonees, J.A., Alwesh, N.S., Palmer, G.T.: Interactive hand-held 3d scanning. In: Delmas, P., James, J., Morris, J. (eds.) Proc. Int. Conf. Image and Vision Computing New Zealand 2006, Great Barrier Island, Auckland, November 2006, pp. 245–250 (2006)

    Google Scholar 

  12. Gimel’farb, G.: Probabilistic regularisation and symmetry in binocular dynamic programming stereo. Pattern Recognition Letters 23, 431–442 (2002)

    Article  MATH  Google Scholar 

  13. Farag, A.A., El-Baz, A., Gimel’farb, G.: Precise segmentation of multimodal images. IEEE Transactions on Image Processing 15(4), 952–968 (2006)

    Article  Google Scholar 

  14. Lu, Z., Hu, Z., Uchimura, K., Kutoba, H., Ono, M.: Sensor fusion with occupancy fusion map for pedestrian detection in outdoor environment. In: Proc. IEEE International Conference on Vehicular Electronics and Safety (ICVES 2008), Columbus, Ohio, USA, September 22-24, pp. 199–204 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, Y.H., Delmas, P., Gimel’farb, G., Valkenburg, R. (2009). Accurate 3D Modelling by Fusion of Potentially Reliable Active Range and Passive Stereo Data. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics