Skip to main content

3D Object Reconstruction Using Full Pixel Matching

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 2320 Accesses

Abstract

This paper proposes an approach to reconstruct 3D object from a sequence of 2D images using 2D Continuous Dynamic Programming algorithm (2DCDP) as full pixel matching technique. To avoid using both calibrated images and fundamental matrix in reconstructing 3D objects, the study uses the same approach with Factorization but aims to demonstrate the effectiveness in pixel matching of 2DCDP compared with other conventional methods such as Scale-Invariant Feature Transform (SIFT) or Kanade-Lucas-Tomasi tracker (KLT). The experiments in this study use relatively few uncalibrated images but still obtain accurate 3D objects, suggesting that our method is promising and superior to conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnard, S., Fischler, M.: Computational Stereo. ACM CSUR 14(4), 553–572 (1982)

    Article  Google Scholar 

  2. Horn, B., Brooks, M.: Shape from shading. MIT Press, Cambridge (1989)

    Google Scholar 

  3. Woodham, R.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)

    Google Scholar 

  4. Mohr, R., Quan, L., Veillon, F.: Relative 3D Reconstruction Using Multiple Uncalibrated Images. The International Journal of Robotics Research 14(6), 619 (1995)

    Article  Google Scholar 

  5. Zhang, Z.: Determining the Epipolar Geometry and its Uncertainty: A Review. IJCV 27(2), 161–195 (1998)

    Article  Google Scholar 

  6. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. IJCV 9(2), 137–154 (1992)

    Article  Google Scholar 

  7. Mahamud, S., Hebert, M.: Iterative projective reconstruction from multiple views. In: Proc. of CVPR 2000, vol. 2 (2000)

    Google Scholar 

  8. Baker, H.: Three-dimensional modelling. In: IJCAI 1977, pp. 649–655 (1977)

    Google Scholar 

  9. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. on PAMI 22(11), 1330–1334 (2000)

    Google Scholar 

  10. Kannala, J., Brandt, S.: Quasi-dense wide baseline matching using match propagation. In: Proc. of IEEE Conf. on CVPR, Minneapolis, MN, USA, pp. 1–8 (2007)

    Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical report, CMU-CS-91-132 (1991)

    Google Scholar 

  13. Yaguchi, Y., Kenta, I., Oka, R.: Optimal pixel matching between images. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 597–610. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Oka, R.: Spotting method for classification of real world data. The Computer Journal 41(8), 559–565 (1998)

    Article  MATH  Google Scholar 

  15. Kanatani, K., Sugaya, Y.: Complete recipe for factorization. IEICE Technical Report. NC 103(391), 19–24 (2003)

    Google Scholar 

  16. Kurosawa, N., Kanatani, K.: Motion Segmentation by Affine Space Separation. IPSJ SIG Notes. CVIM-125-3 2001(4), 25–32 (2001)

    Google Scholar 

  17. Fujiki, J., Kurata, T.: An Mathematical Analysis of the Factorization Method for Generalized Affine Projection Model. Technical report of IEICE, PRMU 97(386), 101–108 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yaguchi, Y., Iseki, K., Viet, N.T., Oka, R. (2009). 3D Object Reconstruction Using Full Pixel Matching. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics