Abstract
In this paper, we develop a segmentation algorithm using configurations of singular points in the linear scale space. We define segment edges as a zero-crossing set in the linear scale space using the singular points. An image in the linear scale space is the convolution of the image and the Gaussian kernel. The Gaussian kernel of an appropriate variance is a typical presmoothing operator for segmentation. The variance is heuristically selected using statistics of images such as the noise distribution in images. The variance of the kernel is determined using the singular point configuration in the linear scale space, since singular points in the linear scale space allow the extraction of the dominant parts of an image. This scale selection strategy derives the hierarchical structure of the segments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure. IECE Japan, Trans. D J68-D, 508–514 (1985) (in Japanese)
Zhao, N.-Y., Iijima, T.: A theory of feature extraction by the tree of stable view-points. IECE Japan, Trans. D J68-D, 1125–1135 (1985) (in Japanese)
Iijima, T.: Pattern Recognition, Corona-sha, Tokyo (1974) (in Japanese)
Witkin, A.P.: Scale space filtering. In: Proc. of 8th IJCAI, pp. 1019–1022 (1993)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)
Lindeberg, T.: Feature detection with automatic selection. IJCV 30, 79–116 (1998)
ter Haar Romeny, B.M.: Front-End Vision and Multi-Scale Image Analysis Multi-scale Computer Vision Theory and Applications, written in Mathematica. Springer, Berlin (2003)
Weicker, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Imiya, A., Sugiura, T., Sakai, T., Kato, Y.: Temporal structure tree in digital linear scale space. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 356–371. Springer, Heidelberg (2003)
Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. PAMI 21, 1105–1120 (1999)
Yuille, A.L., Poggio, T.: Scale space theory for zero crossings. PAMI 8, 15–25 (1986)
Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. Journal of Mathematical Imaging and Vision 18, 169–189 (2003)
Kuijper, A., Florack, L.M.J.: The hierarchical structure of images. IEEE Trans. Image Processing 12, 1067–1079 (2003)
Enomoto, H., Yonezaki, N., Watanabe, Y.: Application of structure lines to surface construction and 3-dimensional analysis. In: Fu, K.-S., Kunii, T.L. (eds.) Picture Engineering, pp. 106–137. Springer, Berlin (1982)
Krueger, W.M., Phillips, K.: The geometry of differential operator with application to image processing. PAMI 11, 1252–1264 (1989)
Canny, J.: A computational approach to edge detection. PAMI 8, 679–698 (1986)
Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Processing 38, 99–112 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nishiguchi, H., Imiya, A., Sakai, T. (2009). Scale Space Hierarchy of Segments. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_115
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_115
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)