Skip to main content

Scale Space Hierarchy of Segments

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 2304 Accesses

Abstract

In this paper, we develop a segmentation algorithm using configurations of singular points in the linear scale space. We define segment edges as a zero-crossing set in the linear scale space using the singular points. An image in the linear scale space is the convolution of the image and the Gaussian kernel. The Gaussian kernel of an appropriate variance is a typical presmoothing operator for segmentation. The variance is heuristically selected using statistics of images such as the noise distribution in images. The variance of the kernel is determined using the singular point configuration in the linear scale space, since singular points in the linear scale space allow the extraction of the dominant parts of an image. This scale selection strategy derives the hierarchical structure of the segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure. IECE Japan, Trans. D  J68-D, 508–514 (1985) (in Japanese)

    Google Scholar 

  2. Zhao, N.-Y., Iijima, T.: A theory of feature extraction by the tree of stable view-points. IECE Japan, Trans. D J68-D, 1125–1135 (1985) (in Japanese)

    Google Scholar 

  3. Iijima, T.: Pattern Recognition, Corona-sha, Tokyo (1974) (in Japanese)

    Google Scholar 

  4. Witkin, A.P.: Scale space filtering. In: Proc. of 8th IJCAI, pp. 1019–1022 (1993)

    Google Scholar 

  5. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)

    Google Scholar 

  6. Lindeberg, T.: Feature detection with automatic selection. IJCV 30, 79–116 (1998)

    Article  Google Scholar 

  7. ter Haar Romeny, B.M.: Front-End Vision and Multi-Scale Image Analysis Multi-scale Computer Vision Theory and Applications, written in Mathematica. Springer, Berlin (2003)

    Google Scholar 

  8. Weicker, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    Google Scholar 

  9. Imiya, A., Sugiura, T., Sakai, T., Kato, Y.: Temporal structure tree in digital linear scale space. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 356–371. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. PAMI 21, 1105–1120 (1999)

    Google Scholar 

  11. Yuille, A.L., Poggio, T.: Scale space theory for zero crossings. PAMI 8, 15–25 (1986)

    MATH  Google Scholar 

  12. Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. Journal of Mathematical Imaging and Vision 18, 169–189 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kuijper, A., Florack, L.M.J.: The hierarchical structure of images. IEEE Trans. Image Processing 12, 1067–1079 (2003)

    Article  MathSciNet  Google Scholar 

  14. Enomoto, H., Yonezaki, N., Watanabe, Y.: Application of structure lines to surface construction and 3-dimensional analysis. In: Fu, K.-S., Kunii, T.L. (eds.) Picture Engineering, pp. 106–137. Springer, Berlin (1982)

    Google Scholar 

  15. Krueger, W.M., Phillips, K.: The geometry of differential operator with application to image processing. PAMI 11, 1252–1264 (1989)

    Google Scholar 

  16. Canny, J.: A computational approach to edge detection. PAMI 8, 679–698 (1986)

    Google Scholar 

  17. Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Processing 38, 99–112 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishiguchi, H., Imiya, A., Sakai, T. (2009). Scale Space Hierarchy of Segments. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_115

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_115

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics