Skip to main content

The Gabor-Based Tensor Level Set Method for Multiregional Image Segmentation

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 2377 Accesses

Abstract

This paper represents a new level set method for multiregional image segmentation. It employs the Gabor filter bank to extract local geometrical features and builds the pixel tensor representation whose dimensionality is reduced by using the offline tensor analysis. Then multiphase level set functions are evolved in the tensor field to detect the boundaries of the corresponding image. The proposed method has three main advantages as follows. Firstly, employing the Gabor filter bank, the model is more robust against the salt-and-pepper noise. Secondly, the pixel tensor representation comprehensively depicts the information of pixels, which results in a better performance on the non-homogenous image segmentation. Thirdly, the model provides a uniform equation for multiphase level set functions to make it more practical. We apply the proposed method to synthetic and medical images respectively, and the results indicate that the proposed method is superior to the typical region-based level set method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: A Fast Level Set Method for Propagating Interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. BrainWeb: Simulated Brain Database, http://www.bic.mni.mcgill.ca/brainweb/

  3. Chan, T.F., Vese, L.A.: Active Contours without Edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active Contours without Edges for Vector-Valued Images. J. Vis. Commum. Image R. 11(2), 130–141 (2000)

    Article  Google Scholar 

  5. Daugman, J.G.: Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles. Vision Res. 20(10), 847–856 (1980)

    Article  Google Scholar 

  6. Li, C., Xu, C., Gui, C., Fox, M.D.: Level Set Evolution without Re-initialization: A New Variational Formulation. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 430–436. IEEE Computer Society Press, Washington (2005)

    Google Scholar 

  7. Lie, J., Lysaker, M., Tai, X.: A Binary Level Set Model and Some Applications to Mumford-Shah Image Segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)

    Article  Google Scholar 

  8. Mumford, D., Shah, J.: Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Commun. Pur. Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape Modeling with Front Propagation: A Level Set Approach. IEEE Trans. Pattern Anal. Machine Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  10. Marcelja, S.: Mathematical Description of the Responses of Simple Cortical Cells. J. Optical Soc. Am. 70(11), 1297–1300 (1980)

    Article  MathSciNet  Google Scholar 

  11. Osher, S., Sethian, J.A.: Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE Based Fast Local Level Set Method. J. Comput. Phys. 155(2), 410–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental Tensor Analysis: Theory and Applications. ACM Trans. Knowl. Disc. from Data 2(3), 11:1–11:37 (2008)

    Article  Google Scholar 

  14. Suri, J.S., Liu, K., Singh, S., Laxminarayan, S.N., Zeng, X., Reden, L.: Shape Recovery Algorithms Using Level Sets In 2-D/3-D Medical Imagery: A State-Of-The-Art Review. IEEE Trans. Inf. Technol. Biomed. 6(1), 8–28 (2002)

    Article  Google Scholar 

  15. Tao, D., Li, X., Wu, X., Maybank, S.J.: General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. IEEE Trans. Pattern Anal. Machine Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  16. Tao, D., Song, M., Li, X., Shen, J., Sun, J., Wu, X., Faloutsos, C., Maybank, S.J.: Bayesian Tensor Approach for 3-D Face Modelling. IEEE Trans. Circuits and Systems for Video Technology 18(10), 1397–1410 (2008)

    Article  Google Scholar 

  17. Tao, D., Li, X., Wu, X., Maybank, S.J.: Tensor Rank One Discriminant Analysis - A Convergent Method for Discriminative Multilinear Subspace Selection. Neurocomputing 71(10-12), 1866–1882 (2008)

    Article  Google Scholar 

  18. Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. Int. J. Comput. Vision 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  19. Wang, Z., Vemuri, B.C.: DTI Segmentation Using an Information Theoretic Tensor Dissimilarity Measure. IEEE Trans. Med. Imaging 24(10), 1267–1277 (2005)

    Article  Google Scholar 

  20. Zhao, H., Chan, T.F., Merrian, B., Osher, S.: A Variational Level Set Approach to Multiphase Motion. J. Comput. Phys. 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, B., Gao, X., Tao, D., Li, X., Li, J. (2009). The Gabor-Based Tensor Level Set Method for Multiregional Image Segmentation. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_120

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_120

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics