Abstract
This work presents new ideas in multidimensional signal theory: an isotropic quadrature filter approach for extracting local features of arbitrary curved signals without the use of any steering techniques. We unify scale space, local amplitude, orientation, phase and curvature in one framework. The main idea is to lift up signals by a conformal mapping to the higher dimensional conformal space where the local signal features can be analyzed with more degrees of freedom compared to the flat space of the original signal domain. The philosophy is based on the idea to make use of the relation of the conformal signal to geometric entities such as hyper-planes and hyper-spheres. Furthermore, the conformal signal can not only be applied to 2D and 3D signals but also to signals of any dimension. The main advantages in practical applications are the rotational invariance, the low computational time complexity, the easy implementation into existing Computer Vision software packages, and the numerical robustness of calculating exact local curvature of signals without the need of any derivatives. Applications can be optical flow and object tracking not only limited to constant velocities but detecting also arbitrary accelerations which correspond to the local curvature.
We acknowledge funding by the German Research Foundation (DFG) under the project SO 320/4-2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brackx, F., De Knock, B., De Schepper, H.: Generalized multidimensional Hilbert transforms in Clifford analysis. International Journal of Mathematics and Mathematical Sciences (2006)
Felsberg, M.: Low-level image processing with the structure multivector. Technical Report 2016, Kiel University, Department of Computer Science (2002)
Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)
Grau, V., Becher, H., Noble, J.A.: Phase-based registration of multi-view real-time three-dimensional echocardiographic sequences. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 612–619. Springer, Heidelberg (2006)
Gürlebeck, K., Habetha, K., Sprössig, W.: Funktionentheorie in der Ebene und im Raum. Grundstudium Mathematik. Birkhäuser, Basel (2006)
Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House Inc., Boston (1996)
Krause, M., Sommer, G.: A 3D isotropic quadrature filter for motion estimation problems. In: Proc. Visual Communications and Image Processing, Beijing, China, vol. 5960, pp. 1295–1306. The International Society for Optical Engineering, Bellingham (2005)
Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Isophote properties as features for object detection. In: CVPR (2), pp. 649–654 (2005)
Wietzke, L., Fleischmann, O., Sommer, G.: 2D image analysis by generalized hilbert transforms in conformal space. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 638–649. Springer, Heidelberg (2008)
Wietzke, L., Fleischmann, O., Sommer, G.: Signal analysis by generalized hilbert transforms on the unit sphere. In: Simos, T.E. (ed.) International Conference on Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, Melville, New York, vol. 1048, pp. 706–709 (2008)
Wietzke, L., Sommer, G.: The conformal monogenic signal. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 527–536. Springer, Heidelberg (2008)
Wietzke, L., Sommer, G., Schmaltz, C., Weickert, J.: Differential geometry of monogenic signal representations. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 454–465. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wietzke, L., Sommer, G. (2009). Nonlinear Motion Detection. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_136
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_136
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)