Skip to main content

Rotation Invariant Texture Classification Using Binary Filter Response Pattern (BFRP)

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 2368 Accesses

Abstract

Using statistical textons for texture classification has shown great success recently. The maximal response 8 (MR8) method, which extracts an 8-dimensional feature set from 38 filters, is one of state-of-the-art rotation invariant texture classification methods. However, this method has two limitations. First, it require a training stage to build a texton library, thus the accuracy depends on the training samples; second, during classification, each 8-dimensional feature is assigned to a texton by searching for the nearest texton in the library, which is time consuming especially when the library size is big. In this paper, we propose a novel texton feature, namely Binary Filter Response Pattern (BFRP). It can well address the above two issues by encoding the filter response directly into binary representation. The experimental results on the CUReT database show that the proposed BFRP method achieves better classification result than MR8, especially when the training dataset is limited and less comprehensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of pattern recognition and computer vision, ch. 2, pp. 235–276 (1993)

    Google Scholar 

  2. Haralik, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. on Systems, Man, and Cybertics 3(6), 610–621 (1973)

    Article  Google Scholar 

  3. Randen, T., Husy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. PAMI 21(4), 291–310 (1999)

    Google Scholar 

  4. Kashyap, R.L., Khotanzed, A.: A model-based method for rotation invariant texture classification. IEEE Trans. on PAMI 8(4), 472–481 (1986)

    Google Scholar 

  5. Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25(2), 173–188 (1992)

    Article  Google Scholar 

  6. Wu, W.R., Wei, S.C.: Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model. IEEE Trans. IP 5(10), 1423–1434 (1996)

    Google Scholar 

  7. Deng, H., Clausi, D.A.: Gaussian MRF rotation-invariant features for image classification. PAMI 26(7), 951–955 (2004)

    Google Scholar 

  8. Jafari-Khouzani, K., Soltanian-Zadeh, H.: Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans.PAMI 27(6), 1004–1008 (2005)

    MathSciNet  Google Scholar 

  9. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1-2), 61–81 (2005)

    Article  Google Scholar 

  10. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. PAMI (to appear)

    Google Scholar 

  11. Ojala, T., Pietikäinen, M., Mäenpää, T.T.: Multiresolution gray-scale and rotation invariant texture classification with Local Binary Pattern. IEEE Trans. PAMI 24(7), 971–987 (2002)

    Google Scholar 

  12. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. PAMI 27(8), 1265–1278 (2005)

    Google Scholar 

  13. Xu, Y., Ji, H., Fermuller, C.: A projective invariant for texture. In: International Conference on Computer Vision and Pattern Recognition, pp. 1932–1939 (2005)

    Google Scholar 

  14. Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification. In: International Conference on Computer Vision (2007)

    Google Scholar 

  15. Pietikäinen, M., Nurmela, T., Mäenpää, T., Turtinen, M.: View-based recognition of real-world textures. Pattern Recognition 37(2), 313–323 (2004)

    Article  MATH  Google Scholar 

  16. Varma, M., Zisserman, A.: Unifying statistical texture classification framework. Image and Vision Computing 22(14), 1175–1183 (2004)

    Google Scholar 

  17. Puzicha, J., Buhmann, J.M., Rubner, Y., Tomasi, C.: Empircal evaluation of dissimilarity measures for color and texture. In: International Conference on Computer Vision, pp. 1165–1172 (1999)

    Google Scholar 

  18. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. ACM Trans. on Graphics 18(1), 1–34 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Z., Zhang, L., Zhang, D. (2009). Rotation Invariant Texture Classification Using Binary Filter Response Pattern (BFRP). In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_137

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_137

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics