Abstract
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (MR8) method, which extracts an 8-dimensional feature set from 38 filters, is one of state-of-the-art rotation invariant texture classification methods. However, this method has two limitations. First, it require a training stage to build a texton library, thus the accuracy depends on the training samples; second, during classification, each 8-dimensional feature is assigned to a texton by searching for the nearest texton in the library, which is time consuming especially when the library size is big. In this paper, we propose a novel texton feature, namely Binary Filter Response Pattern (BFRP). It can well address the above two issues by encoding the filter response directly into binary representation. The experimental results on the CUReT database show that the proposed BFRP method achieves better classification result than MR8, especially when the training dataset is limited and less comprehensive.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of pattern recognition and computer vision, ch. 2, pp. 235–276 (1993)
Haralik, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. on Systems, Man, and Cybertics 3(6), 610–621 (1973)
Randen, T., Husy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. PAMI 21(4), 291–310 (1999)
Kashyap, R.L., Khotanzed, A.: A model-based method for rotation invariant texture classification. IEEE Trans. on PAMI 8(4), 472–481 (1986)
Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25(2), 173–188 (1992)
Wu, W.R., Wei, S.C.: Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model. IEEE Trans. IP 5(10), 1423–1434 (1996)
Deng, H., Clausi, D.A.: Gaussian MRF rotation-invariant features for image classification. PAMI 26(7), 951–955 (2004)
Jafari-Khouzani, K., Soltanian-Zadeh, H.: Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans.PAMI 27(6), 1004–1008 (2005)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1-2), 61–81 (2005)
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. PAMI (to appear)
Ojala, T., Pietikäinen, M., Mäenpää, T.T.: Multiresolution gray-scale and rotation invariant texture classification with Local Binary Pattern. IEEE Trans. PAMI 24(7), 971–987 (2002)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. PAMI 27(8), 1265–1278 (2005)
Xu, Y., Ji, H., Fermuller, C.: A projective invariant for texture. In: International Conference on Computer Vision and Pattern Recognition, pp. 1932–1939 (2005)
Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification. In: International Conference on Computer Vision (2007)
Pietikäinen, M., Nurmela, T., Mäenpää, T., Turtinen, M.: View-based recognition of real-world textures. Pattern Recognition 37(2), 313–323 (2004)
Varma, M., Zisserman, A.: Unifying statistical texture classification framework. Image and Vision Computing 22(14), 1175–1183 (2004)
Puzicha, J., Buhmann, J.M., Rubner, Y., Tomasi, C.: Empircal evaluation of dissimilarity measures for color and texture. In: International Conference on Computer Vision, pp. 1165–1172 (1999)
Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. ACM Trans. on Graphics 18(1), 1–34 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, Z., Zhang, L., Zhang, D. (2009). Rotation Invariant Texture Classification Using Binary Filter Response Pattern (BFRP). In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_137
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_137
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)