Skip to main content

Edge-Based Image Compression with Homogeneous Diffusion

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

It is well-known that edges contain semantically important image information. In this paper we present a lossy compression method for cartoon-like images that exploits information at image edges. These edges are extracted with the Marr–Hildreth operator followed by hysteresis thresholding. Their locations are stored in a lossless way using JBIG. Moreover, we encode the grey or colour values at both sides of each edge by applying quantisation, subsampling and PAQ coding. In the decoding step, information outside these encoded data is recovered by solving the Laplace equation, i.e. we inpaint with the steady state of a homogeneous diffusion process. Our experiments show that the suggested method outperforms the widely-used JPEG standard and can even beat the advanced JPEG2000 standard for cartoon-like images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of the Royal Society of London, Series B 207, 187–217 (1980)

    Article  Google Scholar 

  2. Logan Jr., B.F.: Information in the zero crossings of bandpass signals. Bell System Technical Journal 56, 487–510 (1977)

    MathSciNet  Google Scholar 

  3. Yuille, A.L., Poggio, T.A.: Scaling theorems for zero crossings. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1), 15–25 (1986)

    Article  MATH  Google Scholar 

  4. Curtis, S.R., Oppenheim, A.V., Lim, J.S.: Reconstruction of two-dimensional signals from threshold crossings. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Tampa, FL, March 1985, vol. 10, pp. 1057–1060 (1985)

    Google Scholar 

  5. Zeevi, Y., Rotem, D.: Image reconstruction from zero-crossings. IEEE Transactions on Acoustics, Speech, and Signal Processing 34, 1269–1277 (1986)

    Article  Google Scholar 

  6. Chen, S.: Image reconstruction from zero-crossings. In: Proc. Eighth International Joint Conference on Artificial Intelligence, Milan, Italy, August 1987, vol. 2, pp. 742–744 (1987)

    Google Scholar 

  7. Carlsson, S.: Sketch based coding of grey level images. Signal Processing 15, 57–83 (1988)

    Article  Google Scholar 

  8. Hummel, R., Moniot, R.: Reconstructions from zero-crossings in scale space. IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 2111–2130 (1989)

    Article  Google Scholar 

  9. Grattoni, P., Guiducci, A.: Contour coding for image description. Pattern Recognition Letters 11(2), 95–105 (1990)

    Article  MATH  Google Scholar 

  10. Mallat, S., Zhong, S.: Characterisation of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 720–732 (1992)

    Article  Google Scholar 

  11. Dron, L.: The multiscale veto model: A two-stage analog network for edge detection and image reconstruction. International Journal of Computer Vision 11(1), 45–61 (1993)

    Article  Google Scholar 

  12. Elder, J.H.: Are edges incomplete? International Journal of Computer Vision 34(2/3), 97–122 (1999)

    Article  Google Scholar 

  13. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)

    Google Scholar 

  14. Taubman, D.S., Marcellin, M.W. (eds.): JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)

    Google Scholar 

  15. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM Journal on Applied Mathematics (in press, 2009)

    Google Scholar 

  16. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision 31(2-3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  17. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  18. Joint Bi-level Image Experts Group: Information technology – progressive lossy/lossless coding of bi-level images. ISO/IEC JTC1 11544, ITU-T Rec. T.82, Final Committee Draft 11544 (1993)

    Google Scholar 

  19. Kuhn, M.: Effiziente Kompression von bi-level Bilddaten durch kontextsensitive arithmetische Codierung. Studienarbeit, Institut für Mathemathische Maschinen und Datenverarbeitung der Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (July 1995)

    Google Scholar 

  20. Mahoney, M.: Adaptive weighing of context models for lossless data compression. Technical Report CS-2005-16, Florida Institute of Technology, Melbourne, Florida (December 2005)

    Google Scholar 

  21. Moffat, A.: Implementing the ppm data compression scheme. IEEE Transactions on Communications 38(11), 1917–1921 (1990)

    Article  Google Scholar 

  22. Varnavsky, E.: PowerPAQ., http://powerpaq.sourceforge.net/ (last visited March 21, 2009)

  23. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. 1998 IEEE International Conference on Image Processing, Chicago, IL, October 1998, vol. 3, pp. 259–263 (1998)

    Google Scholar 

  24. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory 26, 368–388 (1962) (in Japanese)

    Google Scholar 

  25. Morton, K.W., Mayers, L.M.: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  26. Werner, H.: Studies on contour. The American Journal of Psychology 47(1), 40–64 (1935)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mainberger, M., Weickert, J. (2009). Edge-Based Image Compression with Homogeneous Diffusion. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics