Skip to main content

Is White Light the Best Illumination for Palmprint Recognition?

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 1801 Accesses

Abstract

Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in Network Society. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  2. Duta, N., Jain, A.K., Mardia, K.V.: Matching of palmprint. Pattern Recognition Letter 23, 477–485 (2002)

    Article  MATH  Google Scholar 

  3. Zhang, D., Shu, W.: Two novel characteristics in palmprint verification: datum point invariance and line feature matching. Pattern Recognition 32, 691–702 (1999)

    Article  Google Scholar 

  4. Lin, C., Chuang, T., Fan, K.: Palmprint verification using hierarchical decomposition. Pattern Recognition 38, 2639–2652 (2005)

    Article  Google Scholar 

  5. Ribaric, S., Fratric, I.: A biometric identification system based on Eigenpalm and Eigenfinger features. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 1698–1709 (2005)

    Article  Google Scholar 

  6. Connie, T., Jin, A.T.B., Ong, M.G.K., Ling, D.N.C.: An automated palmprint recognition system. Image and Vision Computing 23, 501–515 (2005)

    Article  Google Scholar 

  7. Wang, J.-G., Yau, W.-Y., Suwandy, A., Sung, E.: Person recognition by fusing palmprint and palm vein images based on “Laplacianpalm” representation. Pattern Recognition 41, 1514–1527 (2008)

    Article  MATH  Google Scholar 

  8. Han, Y., Sun, Z., Wang, F., Tan, T.: Palmprint recognition under unconstrained scenes. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 1–11. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Zhang, D., Kong, W., You, J., Wong, M.: Online Palmprint Identification. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 1041–1050 (2003)

    Article  Google Scholar 

  10. Han, C.: A hand-based personal authentication using a coarse-to-fine strategy. Image and Vision Computing 22, 909–918 (2004)

    Article  Google Scholar 

  11. Michael, G.K.O., Connie, T., Teoh, A.B.J.: Touch-less palm print biometrics: novel design and implementation. Image and Vision Computing 26, 1551–1560 (2008)

    Article  Google Scholar 

  12. Wu, J., Qiu, Z., Sun, D.: A hierarchical identification method based on improved hand geometry and regional content feature for low-resolution hand images. Signal Processing 88, 1447–1460 (2008)

    Article  Google Scholar 

  13. Hu, D., Feng, G., Zhou, Z.: Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition. Pattern Recognition 40, 339–342 (2007)

    Article  MATH  Google Scholar 

  14. Kumar, A., Zhang, D.: Personal authentication using multiple palmprint representation. Pattern Recognition 38, 1695–1704 (2005)

    Article  Google Scholar 

  15. Zuo, W., Zhang, D., Wang, K.: Bidirectional PCA With Assembled Matrix Distance Metric for Image Recognition. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 36, 863–872 (2006)

    Article  Google Scholar 

  16. Zhang, D., Zhou, Z.: (2D)2PCA: 2-Directional 2-Dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing 69, 224–231 (2005)

    Article  Google Scholar 

  17. Han, D., Guo, Z., Zhang, D.: Multispectral palmprint recognition using wavelet-based image fusion. In: International conference on signal processing, pp. 2074–2077 (2008)

    Google Scholar 

  18. Wong, M., Zhang, D., Kong, W.-K., Lu, G.: Real-time palmprint acquisition system design. IEE Proc.-Vis. Image Signal Process. 152, 527–534 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Z., Zhang, D., Zhang, L. (2009). Is White Light the Best Illumination for Palmprint Recognition?. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics