Skip to main content

Joint Affine and Radiometric Registration Using Kernel Operators

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 1748 Accesses

Abstract

A new global method for image registration in the presence of affine and radiometric deformations is introduced. The method proposed utilizes kernel operators in order to find corresponding regions without using local features. Application of polynomial type kernel functions results in a low complexity algorithm, allowing estimation of the radiometric deformation regardless of the affine geometric transformation. Preliminary experimentation shows high registration accuracy for the joint task, given real images with varying illuminations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int’ Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  2. Matas, J., Chum, O., Urba, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–396 (2002)

    Google Scholar 

  3. Rahtu, E., Salo, M., Heikkila, J.: Affine invariant pattern recognition using multiscale autoconvolution. IEEE Transactions On Pattern Analysis and Machine Intelligence 27(6), 908–918 (2005)

    Article  Google Scholar 

  4. Yang, Z., Cohen, F.S.: Cross-weighted moments and ane invariants for image registration and matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 804–814 (1999)

    Article  Google Scholar 

  5. Francos, J.M., Hagege, R., Friedlander, R.B.: Estimation of Multi-Dimensional Homeomorphisms for Object Recognition in Noisy Environments. In: Thirty Seventh Asilomar Conference on Signals, Systems, and Computers (2003)

    Google Scholar 

  6. Basri, R., Jacobs, D.W.: Lambertian Refectance and Linear Subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 218–233 (2003)

    Article  Google Scholar 

  7. Vigdor, B., Francos, M.J.: Utilizing Kernel Operators for Image Registration (to appear)

    Google Scholar 

  8. http://www.ee.bgu.ac.il/~vigdorb

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vigdor, B., Francos, J.M. (2009). Joint Affine and Radiometric Registration Using Kernel Operators. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics