Abstract
A new global method for image registration in the presence of affine and radiometric deformations is introduced. The method proposed utilizes kernel operators in order to find corresponding regions without using local features. Application of polynomial type kernel functions results in a low complexity algorithm, allowing estimation of the radiometric deformation regardless of the affine geometric transformation. Preliminary experimentation shows high registration accuracy for the joint task, given real images with varying illuminations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int’ Journal of Computer Vision 60(2), 91–110 (2004)
Matas, J., Chum, O., Urba, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–396 (2002)
Rahtu, E., Salo, M., Heikkila, J.: Affine invariant pattern recognition using multiscale autoconvolution. IEEE Transactions On Pattern Analysis and Machine Intelligence 27(6), 908–918 (2005)
Yang, Z., Cohen, F.S.: Cross-weighted moments and ane invariants for image registration and matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(8), 804–814 (1999)
Francos, J.M., Hagege, R., Friedlander, R.B.: Estimation of Multi-Dimensional Homeomorphisms for Object Recognition in Noisy Environments. In: Thirty Seventh Asilomar Conference on Signals, Systems, and Computers (2003)
Basri, R., Jacobs, D.W.: Lambertian Refectance and Linear Subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 218–233 (2003)
Vigdor, B., Francos, M.J.: Utilizing Kernel Operators for Image Registration (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vigdor, B., Francos, J.M. (2009). Joint Affine and Radiometric Registration Using Kernel Operators. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_67
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)