Skip to main content

MCMC-Based Algorithm to Adjust Scale Bias in Large Series of Electron Microscopical Ultrathin Sections

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 1770 Accesses

Abstract

When using a non-rigid registration scheme, it is possible that bias is introduced during the registration process of consecutive sections. This bias can accumulate when large series of sections are to be registered and can cause substantial distortions of the scale space of individual sections thus leading to significant measurement bias. This paper presents an automated scheme based on Markov Chain Monte Carlo (MCMC) techniques to estimate and eliminate registration bias. For this purpose, a hierarchical model is used based on the assumption that (a) each section has the same, independent probability to be deformed by the sectioning and therefore the subsequent registration process and (b) the varying bias introduced by the registration process has to be balanced such that the average section area is preserved forcing the average scale parameters to have a mean value of 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fiala, J.C.: Reconstruct: A Free Editor for Serial Section Microscopy. J. Microscopy 218(1), 52–61 (2005)

    Article  MathSciNet  Google Scholar 

  2. Zitova, B., Flusser, J.: Image registration Methods: A Survey. J. Imag. and Visi. Compu. 21, 977–1000 (2003)

    Article  Google Scholar 

  3. Kremer, J.R., Mastronarde, D.N., McIntosh, J.R.: Computer Visualization of Three-Dimensional Image Data using IMOD. J. Stru. Biol. 116(1), 71–76 (1996)

    Article  Google Scholar 

  4. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Sattonnet, C.: Reconstructing a 3D Structure Serial Histological Sections. J. Imag. Visi. Compu. 19, 25–31 (2000)

    Article  Google Scholar 

  5. Pitiot, A., Bardinet, E., Thompson, P.M., Malandain, G.: Piecewise Affine registration of Biological Images for Volume Reconstruction. J. Medi. Imag. Anal. 10(3), 465–483 (2006)

    Article  Google Scholar 

  6. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. Chapman and Hall, London (1997)

    Google Scholar 

  7. Sätzler, K., Söhl, L.F., Bollmann, J.H., Gerard, J., Borst, G., Frotscher, M., Sakmann, B., Lübke, J.H.: Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22(24), 10567–10579 (2002)

    Google Scholar 

  8. Rollenhagen, A., Sätzler, K., Rodriguez, E.P., Jonas, P., Frotscher, M., Lübke, J.H.R.: Structural Determinants of Transmission at Large Hippocampal Mossy Fiber Synapses. J. Neurosci. 27(39), 10434–10444 (2007)

    Article  Google Scholar 

  9. WinBugs Software (2007), http://www.mrc-bsu.cam.ac.uk/bugs/

  10. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images. IEEE Tran. Patt. Anal. Mach. Inte. 6(6), 721–741 (1986)

    Article  Google Scholar 

  11. Besag, J.: Bayesian computation and stochastic systems. J. Stat. Sci. 10(1), 3–41 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Image registration Toolkit (ITK) (2009), http://itk.org

  13. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley Blackwell, Chichester (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, H., Rodriguez, E.P., Morrow, P., McClean, S., Saetzler, K. (2009). MCMC-Based Algorithm to Adjust Scale Bias in Large Series of Electron Microscopical Ultrathin Sections. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics