Skip to main content

Accelerating Image Retrieval Using Factorial Correspondence Analysis on GPU

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

  • 1806 Accesses

Abstract

We are interested in the intensive use of Factorial Correspondence Analysis (FCA) for large-scale content-based image retrieval. Factorial Correspondence Analysis, is a useful method for analyzing textual data, and we adapt it to images using the SIFT local descriptors. FCA is used to reduce dimensions and to limit the number of images to be considered during the search. Graphics Processing Units (GPU) are fast emerging as inexpensive parallel processors due to their high computation power and low price. The G80 family of Nvidia GPUs provides the CUDA programming model that treats the GPU as a SIMD processor array. We present two very fast algorithms on GPU for image retrieval using FCA: the first one is a parallel incremental algorithm for FCA and the second one is an extension of the filtering algorithm in our previous work for filtering step.

Our implementation is able to scale up the FCA computation a factor of 30 compared to the CPU version. For retrieval tasks, the parallel version on GPU performs 10 times faster than the one on CPU. Retrieving images in a database of 1 million images is done in about 8 milliseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  2. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. of ICCV 2001, vol. 1, pp. 525–531 (2001)

    Google Scholar 

  3. Schaffalitzky, F., Zisserman, A.: Automated location matching in movies. Computer Vision and Image Understanding 92, 236–264 (2003)

    Article  Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  6. Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of the 15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 289–296 (1999)

    Google Scholar 

  7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    Article  MATH  Google Scholar 

  8. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. of ICCV 2003, vol. 2, pp. 1470–1477 (2003)

    Google Scholar 

  9. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Lienhart, R., Slaney, M.: Plsa on large scale image databases. In: Proc. of International Conference on Acoustics, Speech and Signal Processing, pp. 1217–1220 (2007)

    Google Scholar 

  11. Pham, N.K., Morin, A.: Une nouvelle approche pour la recherche d’images par le contenu. In: Proc. of EGC 2008, vol. RNTI-E-11, pp. 475–486 (2008)

    Google Scholar 

  12. Robinson, J.: The k-d-b-tree: a search structure for large multidimensional dynamic indexes. In: Proc. of the Conference on Management of data, pp. 10–18 (1981)

    Google Scholar 

  13. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. of the conference on Management of data, pp. 47–57 (1984)

    Google Scholar 

  14. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A cost model for nearest neighbor search in high-dimensional data space. In: Proc. of ACM symposium on Principles of database systems, pp. 78–86. ACM, New York (1997)

    Google Scholar 

  15. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proc. of VLDB 1998, pp. 194–205 (1998)

    Google Scholar 

  16. Böhm, C., Braunmüller, B., Kriegel, H.P., Schubert, M.: Efficient similarity search in digital libraries. In: Proc. of the Advances in Digital Libraries, pp. 193–199 (2000)

    Google Scholar 

  17. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. of CVPR 2006, June 2006, vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  18. Benzecri, J.P.: L’analyse des correspondances. Dunod, Paris (1973)

    MATH  Google Scholar 

  19. Pham, N.K., Morin, A., Gros, P., Le, Q.T.: Utilisation de l’analyse factorielle des correspondances pour la recherche d’images à grande échelle. In: Proc. of EGC 2009, vol. RNTI-E-15, pp. 283–294 (2009)

    Google Scholar 

  20. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics (1999)

    Google Scholar 

  21. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, NK., Morin, A., Gros, P. (2009). Accelerating Image Retrieval Using Factorial Correspondence Analysis on GPU. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics