Abstract
We are interested in the intensive use of Factorial Correspondence Analysis (FCA) for large-scale content-based image retrieval. Factorial Correspondence Analysis, is a useful method for analyzing textual data, and we adapt it to images using the SIFT local descriptors. FCA is used to reduce dimensions and to limit the number of images to be considered during the search. Graphics Processing Units (GPU) are fast emerging as inexpensive parallel processors due to their high computation power and low price. The G80 family of Nvidia GPUs provides the CUDA programming model that treats the GPU as a SIMD processor array. We present two very fast algorithms on GPU for image retrieval using FCA: the first one is a parallel incremental algorithm for FCA and the second one is an extension of the filtering algorithm in our previous work for filtering step.
Our implementation is able to scale up the FCA computation a factor of 30 compared to the CPU version. For retrieval tasks, the parallel version on GPU performs 10 times faster than the one on CPU. Retrieving images in a database of 1 million images is done in about 8 milliseconds.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. of ICCV 2001, vol. 1, pp. 525–531 (2001)
Schaffalitzky, F., Zisserman, A.: Automated location matching in movies. Computer Vision and Image Understanding 92, 236–264 (2003)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)
Hofmann, T.: Probabilistic latent semantic analysis. In: Proc. of the 15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 289–296 (1999)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)
Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. of ICCV 2003, vol. 2, pp. 1470–1477 (2003)
Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)
Lienhart, R., Slaney, M.: Plsa on large scale image databases. In: Proc. of International Conference on Acoustics, Speech and Signal Processing, pp. 1217–1220 (2007)
Pham, N.K., Morin, A.: Une nouvelle approche pour la recherche d’images par le contenu. In: Proc. of EGC 2008, vol. RNTI-E-11, pp. 475–486 (2008)
Robinson, J.: The k-d-b-tree: a search structure for large multidimensional dynamic indexes. In: Proc. of the Conference on Management of data, pp. 10–18 (1981)
Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. of the conference on Management of data, pp. 47–57 (1984)
Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A cost model for nearest neighbor search in high-dimensional data space. In: Proc. of ACM symposium on Principles of database systems, pp. 78–86. ACM, New York (1997)
Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Proc. of VLDB 1998, pp. 194–205 (1998)
Böhm, C., Braunmüller, B., Kriegel, H.P., Schubert, M.: Efficient similarity search in digital libraries. In: Proc. of the Advances in Digital Libraries, pp. 193–199 (2000)
Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. of CVPR 2006, June 2006, vol. 2, pp. 2161–2168 (2006)
Benzecri, J.P.: L’analyse des correspondances. Dunod, Paris (1973)
Pham, N.K., Morin, A., Gros, P., Le, Q.T.: Utilisation de l’analyse factorielle des correspondances pour la recherche d’images à grande échelle. In: Proc. of EGC 2009, vol. RNTI-E-15, pp. 283–294 (2009)
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics (1999)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pham, NK., Morin, A., Gros, P. (2009). Accelerating Image Retrieval Using Factorial Correspondence Analysis on GPU. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_69
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)