Skip to main content

Extraction of Cardiac Motion Using Scale-Space Features Points and Gauged Reconstruction

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5702))

Included in the following conference series:

Abstract

Motion estimation is an important topic in medical image analysis. The investigation and quantification of, e.g., the cardiac movement is important for assessment of cardiac abnormalities and to get an indication of response to therapy. In this paper we present a new aperture problem-free method to track cardiac motion from 2-dimensional MR tagged images and corresponding sine-phase images. Tracking is achieved by following the movement of scale-space critical points such as maxima, minima and saddles. Reconstruction of dense velocity field is carried out by minimizing an energy functional with regularization term influenced by covariant derivatives gauged by a prior assumption.

MR tags deform along with the tissue, a combination of MR tagged images and sine-phase images was employed to produce a regular grid from which the scale-space critical points were retrieved. Experiments were carried out on real image data, and on artificial phantom data from which the ground truth is known. A comparison between our new method and a similar technique based on homogeneous diffusion regularization and standard derivatives shows increase in performance. Qualitative and quantitative evaluation emphasize the reliability of dense motion field allowing further analysis of deformation and torsion of the cardiac wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics 2009 update. Circulation 119, 480–486 (2009)

    Google Scholar 

  2. Horn, B.K.P., Shunck, B.G.: Determining optical flow. AI 17, 185–203 (1981)

    Google Scholar 

  3. Bruhn, A., Weickert, J., Kohlberger, T., Schnoerr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. IJCV 70(3), 257–277 (2006)

    Article  Google Scholar 

  4. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  5. Cheng, C.C., Li, H.T.: Feature-based optical flow computation. IJIT 12(7), 82–90 (2006)

    Google Scholar 

  6. Florack, L.M.J., Niessen, W., Nielsen, M.: The intrinsic structure of optic flow incorporating measurements of duality. IJCV 27(3), 263–286 (1998)

    Article  Google Scholar 

  7. van Assen, H.C., Florack, L.M.J., Suinesiaputra, A., Westenberg, J.J.M., ter Haar Romeny, B.M.: Purely evidence based multi-scale cardiac tracking using optic flow. In: MICCAI 2007 workshop on CBM II, pp. 84–93 (2007)

    Google Scholar 

  8. Florack, L.M.J., van Assen, H.C.: Dense multiscale motion extraction from cardiac cine MR tagging using HARP technology. In: ICCV workshop on MMBIA (2007)

    Google Scholar 

  9. Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A., Sapiro, E.P.: Human heart: Tagging with MR imaging a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988)

    Google Scholar 

  10. Osman, N.F., McVeigh, W.S., Prince, J.L.: Cardiac motion tracking using cine harmonic phase (harp) magnetic resonance imaging. Magnetic Resonance in Medicine 42(6), 1048–1060 (1999)

    Article  Google Scholar 

  11. Gabor, D.: Theory of communication. J. IEE 93(26), 429–457 (1946)

    Google Scholar 

  12. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. ter Haar Romeny, B.M.: Front-End Vision and Multi- Scale Image Analysis: Multiscale Computer Vision Theory and Applications, written in Mathematica. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  14. Florack, L.M.J.: Image Structure. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  15. Staal, J., Kalitzin, S., ter Haar Romeny, B.M., Viergever, M.: Detection of critical structures in scale space. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 105–116. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Florack, L.M.J., Janssen, B.J., Kanters, F.M.W., Duits, R.: Towards a new paradigm for motion extraction. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 743–754. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Janssen, B.J., Florack, L.M.J., Duits, R., ter Haar Romeny, B.M.: Optic flow from multi-scale dynamic anchor point attributes. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 767–779. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Janssen, B.J., Kanters, F.M.W., Duits, R., Florack, L.M.J., ter Haar Romeny, B.M.: A linear image reconstruction framework based on sobolev type inner products. IJCV 70(3), 231–240 (2006)

    Article  Google Scholar 

  19. Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. IJCV 52(2/3), 73–95 (2003)

    Article  Google Scholar 

  20. Numerical Methods for the STEM Undergraduate. Course Notes

    Google Scholar 

  21. Janssen, B.J., Duits, R., Florack, L.M.J.: Coarse-to-fine image reconstruction based on weighted differential features and background gauge fields. LNCS, vol. 5567, pp. 377–388. Springer, Heidelberg (2009)

    Google Scholar 

  22. Barron, J.L., Fleet, D.J., Beauchemin, S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becciu, A., Janssen, B.J., van Assen, H., Florack, L., Roode, V., ter Haar Romeny, B.M. (2009). Extraction of Cardiac Motion Using Scale-Space Features Points and Gauged Reconstruction. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03767-2_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03766-5

  • Online ISBN: 978-3-642-03767-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics