
Recognition of Simple 3D Geometrical Objects

under Partial Occlusion

Alexandra Barchunova and Gerald Sommer

Bielefeld University, 33615 Bielefeld, Germany
{abarch}@cor-lab.uni-bielefeld.de

Abstract. In this paper we present a novel procedure for contour-based
recognition of partially occluded three-dimensional objects. In our ap-
proach we use images of real and rendered objects whose contours have
been deformed by a restricted change of the viewpoint. The prepara-
tory part consists of contour extraction, preprocessing, local structure
analysis and feature extraction. The main part deals with an extended
construction and functionality of the classifier ensemble Adaptive Occlu-
sion Classifier (AOC). It relies on a hierarchical fragmenting algorithm
to perform a local structure analysis which is essential when dealing with
occlusions. In the experimental part of this paper we present classifica-
tion results for five classes of simple geometrical figures: prism, cylinder,
half cylinder, a cube, and a bridge. We compare classification results for
three classical feature extractors: Fourier descriptors, pseudo Zernike and
Zernike moments.

1 Introduction

Contour-based recognition of partially occluded objects involves handling of sev-
eral challenging issues. Contour acquisition and its quality improvement is the
first task. In this work we have made use of some common techniques for noise
cancelling like cautious Gaussian smoothing and B-Spline modelling [7]. Partial
occlusion of shape poses a big challenge for algorithms with a global approach.
An object is made invisible in a local environment. At the same time its shape in
this environment is replaced by the shape of the occluding object. Recognition
of occluded shapes by a human involves an analysis of the local structure, a
search for a characteristic contour fragment allowing a clear assignment to the
corresponding object class. Automatisation of the recognition process requires
likewise a method that conducts such a local structural analysis of the object
contours under partial occlusion. The algorithm that performs the local struc-
ture analysis in our work will be referred to as hierarchical fragmenting. For a
given input contour this method generates several fragment levels, whereby the
structural complexity of the fragments increases from level to level. The B-spline
interpolation for noise cancelling and hierarchical fragmenting are both based on
the segmentation that uses local maxima of the curvature function for extrac-
tion of the points of interest. The importance of such points in contour-based
approaches has been investigated in [3].
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In this paper we present classification results for two classical affine-invariant
feature extractors based on Fourier descriptors and Zernike moments [10, 9].
Within our experimental setup we allow a restricted perspective deformation
of the contour. The scene is shot only from above while the camera is moving
parallel to the surface. It has been shown in our work that it is possible to
compensate a certain degree of perspective deformation by training. Experiments
with rendered object images have shown that the larger the degree of perspective
change of the contour the larger the classification error when using an affine-
invariant feature extractor.

Multiple classifier systems have been employed in complex computer vision
tasks starting in the eighties. Different aspects of development in this field have
been discussed by T.K. Ho in [4]. In our approach each member of the ensemble
specializes on its own degree of occlusion, defined by the corresponding level of
the hierarchical fragmenting. The final hypothesis is generated by application
of the class-related weighted average method. The determination of weights is
formulated as a linear optimization problem being solved for an additional set
of occluded shapes. The empirical results have shown that our approach delivers
a considerable improvement of classification results compared to using a single
classifier for recognition of partially occluded objects.

2 Contour Preprocessing and Feature Extraction

Factors like hardware noise, reflection or shadows result in an acquired contour
that doesn’t comply with the smooth shape of the original objects (see Figure
1(a)). Our goal is to improve the contour locally without loosing the information
about the global structure. In our approach we describe the global structure by
a set of points of interest (POI), which we later interpolate with B-splines. Here

(a) Test objects in a typ-
ical scene.

(b) Extracted POI (blue points); interpolated contour
(red) and original contour (blue).

Fig. 1. Typical test objects, preprocessed and segmented contours.

we use a common way to define a point of interest as a local maximum of the
curvature function [5, 2]. Let x and y be functions defining a discrete contour in
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a parametric representation. Then the curvature in the point p := (x(t), y(t)),
t ∈ T 1 is defined as follows:

k(p) :=
x′(t)y′′(t) − x′′(t)y′(t)
(

x′2(t) + y′2(t)
)3/2

, (1)

where T denotes the number of discrete points in the contour. POI p0 = (x(t0), y(t0))
is defined for ǫ ∈ N, t0 ∈ T and an environment U0 = U(t0, ǫ) as follows:

|k(p0)| = max
p∈Pu

|k(p)|, (2)

where Pu = {(x(t), y(t))|t ∈ U0}. In order to obtain realistic values for k(p),
we first apply Gaussian smoothing with σ = 5 on the contour data. Then we
calculate averaged derivatives that we use instead of regular discrete derivatives
in evaluation of k(p). Each derivative is built as an average over 5 neighbouring
points, which reduces the influence of noise. In the second step we apply a
procedure for POI extraction that can be schematically described as follows:

1. Sort {(p, k(p)} in descending order according to the values k(p)
2. Select the first available point from the sorted list to be the next POI; pro-

hibit selection of further points belonging to the local environment of the
selected point

3. Go to 2 if there are points available in the list, otherwise emit the chosen
POI

The value of the local environment parameter in 2 depends on the structural
complexity of the objects. In our experiments we have used the value 1/10 of the
contour length. Finally, we conduct B-spline interpolation for the calculated POI.
This results in an improvement of the local contour structure, while sustaining
the global shape characteristics (see Figure 1(b)).

Contours of three-dimensional objects are rarely planar. Thus we can either
try to reconstruct the three dimensional structure of the curve or we work with
the two dimensional projection. Here we make use of the second option. In our
tests (see Section 4) we have shown that it is possible to use affine-invariant
feature extractors on such data and compensate the restricted perspective de-
formation by learning. For a given sampled contour we calculate a vector of
normalised Fourier descriptors and (pseudo) Zernike moments. In our experi-
ments we have used a constant number of points, L = 64, to represent any
kind of contour data. The dependency between the dimensionality of the feature
vector and the classification error will be described in Section 4.

3 Classifier Ensemble and Its Organisation

In the following sections we will describe the nature of Adaptive Occlusion Clas-
sifier (AOC) by looking at the following four main components: the data set,
feature extractors, basis classifiers and the combination technique [6].

1 Throughout this work t ∈ T denotes t ∈ {1, . . . , T} for a T ∈ N
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3.1 Data Set

The data pool consists of real camera images and rendered images2 of the non-
occluded test objects. In our experiments we investigate solely artificially gener-
ated straight line boundary occlusion and make use of two methods for occlusion
generation. The first method of contour occlusion simply deletes a given part of
the contour data and connects the gap with a straight line. It is computation-
ally efficient but can produce unrealistic contours when applied to non-convex
shapes. The second method calculates the positions of the pixels within the con-
tour that can be deleted to yield a linear occlusion of the object area. The later
method of area occlusion is computationally more complex but delivers realistic
linear occlusions independent of the shape convexity.

On the data level the members of the AOC are assigned to their personal data
subsets. These are generated by the hierarchical fragmenting algorithm based
on the set of POI (or control points) for the B-spline interpolation. Consider
a contour fragment located between three neighbouring control points (see the
example fragments in the first line of Figure 2). A set of all such fragments builds
up the first hierarchical level or the first data subset. Note that the set of POI
used in the algorithm contains a subset of structurally descriptive points, e.g. a
corner of a prism. Analogously, the subset of the generated fragments contains a
subset of local shape-descriptive fragments, e.g. a fragment, containing a corner
of a prism. The hierarchical fragmenting algorithm on the i-th step connects two
neighbouring segments of the (i-1)-th level to a new one. This generates levels
of contour fragments of growing structural complexity, defining different levels
of partial occlusion. In Figure 2 you can see some example fragments of five
hierarchical levels for a bridge contour segmentation.

Fig. 2. Five data subsets of fragments generated by the hierarchical fragmenting of a
bridge contour; rows correspond to the hierarchical levels.

2 In our experiments we have used POV-Ray [1] for rendering
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3.2 Feature Extractors and Basis Classifiers

In a perfect scenario classifier training results in a model that completely covers
the feature space of the partially occluded objects. Because the set of all possible
occlusions is vast, we have to choose training data that allows an approximate
solution. In our work we use the data subsets generated by the hierarchical
fragmenting which the feature extractor transforms into feature vector subsets.
As mentioned above, we use normalized Fourier descriptors, Zernike and pseudo
Zernike moments. On the classifier level we use Local Credibility Criterion (LCC)
classifiers [8]. LCC classifiers consists of multiple hypersphere shaped models.
Their feasibility or credibility is determined by the ratio of correct responses to
the number of overall responses: γ = Rc/Rt. Both the set of models and their
number is dynamic.

3.3 Combination Technique and Weight Vector Estimation

Let F ⊂ R
n be a feature space and C := {1, . . . ,K} ⊂ N the set of class labels.

Let D := {D1, . . . ,DL} be the classifier ensemble, where a classifier Di for i ∈ L
can be described by the following map:

Di : F → [0, 1]K , x 7→ (di1(x) . . . diK(x)). (3)

In this work we have used the class-related weighted average method in order
to combine the responses of the AOC members. For each j ∈ K , i ∈ L the
class-related weighted average for a sample x is defined by:

µj(x) :=
L

∑

i=1

wijdij(x), (4)

where the wij ’s denote the class specific weights.
AOC was designed to allow contour-based classification of objects with dif-

ferent degrees of occlusion. Each member of the ensemble specializes on its own
degree of occlusion during training as well as during testing. The main task of
the weight vector is to integrate the individual classifier class responses to a final
hypothesis according to their classification performance. For this purpose we use
an additional set of contours with a random uniform area occlusion up to 80
percent, denoted by γw

max = 0.8. Further let X := {(xn, cn)|n ∈ N } be a labeled
sample set. The response matrix Rl ∈ R

N×K of the lth classifier to the sample
set X is given by:

Rl :=





dl1(x1) . . . dlK(x1)
. . . . . . . . .

dl1(xN ) . . . dlK(xN )



 (5)

We define an auxiliary function that allows a correct building of a scalar product
and adding up of columns of the matrix Rl, l ∈ L for correct solving of the
minimization problem (see Eq. 8). For a k ∈ K we define:

fk : R
N×K → R

N ·K , Rl 7→ (v1, . . . , vp)
T , (6)
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where p = N · K and for i ∈ p , n ∈ N :

vi :=

{

dlk(xn), if i = N · (k − 1) + n

0, otherwise.
(7)

Let r = L ·K be the dimension of the weight vector. We combine the responses
of the classifier ensemble in the following matrix R̂ ∈ R

p×r:

R̂ := (f1(R1), f2(R1), . . . , fj(Ri), . . . , fK(RL)).

For a given sample set X the weight vector w ∈ R
r

w := (w11, w12, . . . , wlk, . . . , wLK)T ,

can be calculated by minimizing the distance between the optimal response
matrix Ropt and the weighted (see Eq. 4) response matrix R̂:

min
w∈Rr

‖R̂w − Ropt‖. (8)

4 Experimental Results

The data pool consists of 1000 camera images and 1600 rendered non-occluded
images. For every type of geometrical figure (bridge, cylinder, half cylinder, cube
and prism) the data pool provides the same number of images. The objects have
been recorded with a perspective deformation through a change of the viewpoint
or the POV-Ray configuration.

In the first experiment we analyse the dependency between the dimensional-
ity of the feature vector and the classification error rate. For the training of the
ensemble members we have randomly selected 370 contours of non-occluded ob-
jects out of the data pool. For the calculation of the weight vector we have used
250 contours with generated random area occlusion up to 30 percent, γw

max = 0.3.
In all algorithms for random occlusion generation we use uniform distribution on
the interval (0, γmax]. On average random uniform area occlusion up to 30 per-
cent is approximately equivalent to random uniform contour occlusion up to 50
percent in our experimental setup. We have tested 250 contours with γt

max = 0.3.
In the Figure 3(a) you can see the dimension of the feature vector on the x-axis
and the average classification error rate on the y-axis. Zernike moments (ZM),
pseudo Zernike moments (PZM) and Fourier descriptors (FD) yield approxi-
mately the same results. The lowest average error is about 7 percent which can
be explained by the ambiguity of the contours with partial occlusion.

In the next experiment (see Figure 3(b)) we have compared the performance
of a single LCC classifier vs. AOC ensemble. For the calculation of the weight
vector we have used contours with a random uniform area occlusion up to 80
percent, γw

max = 0.8. As a representation of the contour data we have chosen to
use a 14-dimensional normalized vector of FD. On the x-axis we have plotted the
constant area occlusion parameter γt

const. The value of this parameter indicates
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(a) Classification results for different fea-
ture extractors

(b) Classification results: AOC vs. single
LCC

Fig. 3. Classification results for AOC ensemble and a single LCC classifier.

for all objects in the sample set a constant but randomly placed area occlusion
specified by the value γt

const. On the y-axis you can see the recognition error. For
all levels of occlusion AOC classifies considerably better than a single LCC. Data
with a constant area occlusion of more than 80 percent cannot be classified better
than by random guessing. This can be explained by a high degree of ambiguity
of strongly occluded object shapes.

The third experiment was aimed at exploring the capacity of rendered data
alone as well as its potential in combination with real camera images within
our applications. We have trained AOC with 350 samples. For weight vector
estimation we have used 250 contours with γw

max = 0.5. Table 1 shows the
summary of the test results for different combinations of real (R) and synthetic
(S) data in training, weight vector estimation and testing (R/S-R/S-R/S). Our
test data consists of 100 samples with γt

max = 0.5. The in-plane translation

R-R-S R-S-R R-S-S S-R-R S-R-S S-S-R S-S-S

Error rate (Set 1) 0.28 0.20 0.22 0.21 0.18 0.24 0.15
Error rate (Set 2) 0.27 0.19 0.24 0.22 0.21 0.23 0.22

Table 1. Comparison of error rates for different sets of synthetic data

of the objects with regard to the camera position within Set 2 is two times
as large as within Set 1. The classification using real camera images (R-R-R)
yielded an average error of about 17 percent. Consider the sixth column of the
table corresponding to the S-S-R configuration. The test results are only about
5 percent worse compared to the case where only real data (R-R-R) has been
used in training and weight estimation.
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5 Conclusions

In this paper we have shown that the usage of the AOC ensemble for recog-
nition of partially occluded shapes of three-dimensional objects considerably
improves the results in comparison to a single LCC classifier. Classification for
γt

max yielded an average error rate of about 17 percent. This can be explained
by the ambiguity of the partially occluded data.

Our procedure of hierarchical fragmenting delivers levels or subsets of con-
tour segments with growing structural complexity. By using this method in our
application we have demonstrated that it is well suited for carrying out local
structure analysis. In our tests we have compared the following classical affine-
invariant feature extractors: Fourier descriptors, pseudo Zernike moments and
Zernike moments. All three have yielded comparable results. It can be concluded
that the usage of 12 to 14 dimensional feature vectors is sufficient for our appli-
cation.

Tests with rendered images have revealed an automation potential of the
ensemble training within our experimental setup. Note that in our tests the usage
of rendered images in training resulted in an error rate increase of approximately
5 percent. More tests could be conducted in this area.
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