Abstract
The recognition of transitive, goal-directed actions requires a sensible balance between the representation of specific shape details of effector and goal object and robustness with respect to image transformations. We present a biologically-inspired architecture for the recognition of transitive actions from video sequences that integrates an appearance-based recognition approach with a simple neural mechanism for the representation of the effector-object relationship. A large degree of position invariance is obtained by nonlinear pooling in combination with an explicit representation of the relative positions of object and effector using neural population codes. The approach was tested on real videos, demonstrating successful invariant recognition of grip types on unsegmented video sequences. In addition, the algorithm reproduces and predicts the behavior of action-selective neurons in parietal and prefrontal cortex.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in the premotor cortex. Brain 119(Pt 2), 593–609 (1996)
Logothetis, N.K., Pauls, J., Poggio, T.: Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5(5), 552–63 (1995)
Perrett, D.I., Harries, M.H., Bevan, R., Thomas, S., Benson, P.J., Mistlin, A.J., Chitty, A.J., Hietanen, J.K., Ortega, J.E.: Frameworks of analysis for the neural representation of animate objects and actions. J. Exp. Biol. 146, 87–113 (1989)
Oztop, E., Kawato, M., Arbib, M.: Mirror neurons and imitation: a computationally guided review. Neural Netw. 19(3), 254–271 (2006)
Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nat. Rev. Neurosci. 4(3), 179–192 (2003)
Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)
Mutch, J., Lowe, D.G.: Multiclass object recognition with sparse, localized features. In: IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR), vol. 1, pp. 11–18 (2006)
Prevete, R., Tessitore, G., Santoro, M., Catanzariti, E.: A connectionist architecture for view-independent grip-aperture computation. Brain Research 1225, 133–145 (2008)
Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)
Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Proceedings of the Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic (May 2004)
Fidler, S., Leonardis, A.: Towards scalable representations of object categories: Learning a hierarchy of parts. In: IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)
Bobick, A.F., Davis, J.W., Society, I.C., Society, I.C.: The recognition of human movement using temporal templates. IEEE Trans. on Pattern Anal. and Mach. Intell. 23, 257–267 (2001)
Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: IEEE Int. Conference on Computer Vision (ICCV), pp. 1395–1402 (2005)
Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: Proc. IEEE Int. Conf. on Comp. Vision (ICCV), vol. 1, pp. 1–18 (2007)
Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR), vol. 2, p. 123 (2001)
Escobar, M.J., Masson, G.S., Vieville, T., Kornprobst, P.: Action recognition using a bio-inspired feedforward spiking network. Int. J. Comput. Vision 82(3), 284–301 (2009)
Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16(6), 2112–2126 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fleischer, F., Casile, A., Giese, M.A. (2009). Bio-inspired Approach for the Recognition of Goal-Directed Hand Actions. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_87
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_87
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)