Abstract
In this paper we apply the Local Binary Pattern on Three Orthogonal Planes (LBP-TOP) descriptor to the field of human action recognition. A video sequence is described as a collection of spatial-temporal words after the detection of space-time interest points and the description of the area around them. Our contribution has been in the description part, showing LBP-TOP to be a promising descriptor for human action classification purposes. We have also developed several extensions to the descriptor to enhance its performance in human action recognition, showing the method to be computationally efficient.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: Proceedings of Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 726–733 (2003)
Shechtman, E., Irani, M.: Space-time behavior based correlation. In: IEEE Computer Society Conference on CVPR, June 20-25, vol. 1, pp. 405–412 (2005)
Ali, S., Basharat, A., Shah, M.: Chaotic invariants for human action recognition. In: Proc. of IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 971–987 (2002)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)
Shan, C., et al.: Facial Expression recognition based on Local Binary Patterns: A comprehensive study. Image and Vision Computing (2008)
Zhao, G., Pietikäinen, M.: Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 915–928 (2007)
Kellokumpu, V., Zhao, G., Pietikäinen, M.: Human Activity Recognition Using a Dynamic Texture Based Method. In: British Machine Vision Conference (2008)
Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, August 2004, vol. 3, pp. 32–36 (2004)
Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.J.: Behavior recognition via sparse spatio-temporal features. In: Proc. of ICCV Int. work-shop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VSPETS), pp. 65–72 (2005)
Laptev, I.: On space-time interest points. International Journal of Computer Vision (IJCV) 64(2-3), 107–123 (2005)
Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mattivi, R., Shao, L. (2009). Human Action Recognition Using LBP-TOP as Sparse Spatio-Temporal Feature Descriptor. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_90
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_90
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)