Abstract
In this paper, we propose a Hierarchical Spatial Markov Model (HSMM) for image categorization. We adopt the Bag-of-Words (BoW) model to represent image features with visual words, thus avoiding the heavy work of manual annotation in most Markov model based approaches. Our HSMM is designed to describe the spatial relations of these visual words by modeling the distribution of transitions between adjacent words over each image category. A novel idea of semantic hierarchy is exerted in the model to represent the composition relationship of visual words at semantic level. Experiments demonstrate that our approach outperforms Bayesian hierarchical model based categorization approach with 12.5% and it also performs better than the previous Markov model based approach with 11.8% on average.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Battiato, S., Farinella, G.M., Gallo, G., Ravi, D.: Scene categorization using bag of textons on spatial hierarchy. In: ICIP, pp. 2536–2539 (2008)
Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)
Bouman, C.A., Shapiro, M.: A multiscale random field model for bayesian image segmentation. IEEE Transactions on Image Processing 3(2), 162–177 (1994)
Crandall, D.J., Huttenlocher, D.P.: Weakly supervised learning of part-based spatial models for visual object recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 16–29. Springer, Heidelberg (2006)
Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: Proc. CVPR, vol. 2, pp. 524–531 (2005)
Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden markov model: analysis and applications. Machine Learning 32, 41–62 (1998)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, vol. 2, pp. 2169–2178 (2006)
Li, J., Gray, R.M., Olshen, R.A.: Multiresolution image classification by hierarchical modeling with two-dimensional hidden markov models. IEEE Transactions on Information Theory 46(5), 1826–1841 (2000)
Li, J., Joshi, D., Wang, J.: Stochastic modeling of volume images with a 3-d hidden markov model. In: ICIP, pp. 2359–2362 (2004)
Murphy, K.P., Paskin, M.A.: Linear time inference in hierarchical hmms. In: Proceedings of Neural Information Processing Systems, pp. 833–840 (2001)
Perina, A., Christani, M., Murino, V.: Nuatural scenes categorization by hierarchical extraction of typicality patterns. In: 14th International Conference on Image Analysis and Processing, pp. 801–806 (2007)
Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Describing visual scenes using transformed dirichlet processes. In: Advances in Neural Information Processing Systems, vol. 18, pp. 1299–1306 (2005)
Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Learning hierarchical models of scenes, objects, and parts. In: ICCV, vol. 2, pp. 1331–1338 (2005)
Yu, F., Ip, H.H.S.: Automatic semantic annotation of images using spatial hidden markov model. In: Proceedings of International Conference on Multimedia and Expo, pp. 305–308 (2006)
Yu, F., Ip, H.H.S.: Semantic content analysis and annotation of histological images. Computers in Biology and Medicine 38(6), 635–649 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, L., Lu, Z., Ip, H.H.S. (2009). Image Categorization Based on a Hierarchical Spatial Markov Model. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03767-2_93
Download citation
DOI: https://doi.org/10.1007/978-3-642-03767-2_93
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03766-5
Online ISBN: 978-3-642-03767-2
eBook Packages: Computer ScienceComputer Science (R0)