
How Formal Dynamic Verification Tools
Facilitate Novel Concurrency Visualizations ?

Sriram Aananthakrishnan1, Michael DeLisi1, Sarvani Vakkalanka1, Anh Vo1,
Ganesh Gopalakrishnan1, Robert M. Kirby1, and Rajeev Thakur2

1 School of Computing, Univ. of Utah, Salt Lake City, UT 84112, USA
2 Math. and Comp. Sci. Div., Argonne Nat. Lab., Argonne, IL 60439, USA

Abstract. With the exploding scale of concurrency, presenting valu-
able pieces of information collected by formal methods tools intuitively
and graphically can greatly enhance concurrent system debugging. Tra-
ditional MPI program debuggers present trace views of MPI program
executions. Such views are redundant, often containing equivalent traces
that permute independent MPI calls. In our ISP formal dynamic verifier
for MPI programs, we present a collection of alternate views made pos-
sible by the use of formal dynamic verification. Some of ISP’s views help
pinpoint errors, some facilitate discerning errors by eliminating redun-
dancy, while others help understand the program better by displaying
concurrent even orderings that must be respected by all MPI implemen-
tations, in the form of completes-before graphs. In this paper, we describe
ISP’s GUI capabilities in all these areas which are currently supported
by a portable Java based GUI, a Microsoft Visual Studio GUI, and an
Eclipse based GUI whose development is in progress.

1 Introduction

Program debugging tools and their graphical user interfaces must strive to meet
three goals: (i) locate errors in the tool’s range reliably, and display the errors
intuitively, (ii) eliminate redundant work in locating the errors, and correspond-
ingly avoid presenting redundant work, (iii) depict items of interest so that users
gather deep insights about their programs and the APIs/libraries they use. These
three goals are even more important to meet for concurrent program debuggers,
because concurrent program executions are often far less intuitive than sequential
program executions. This paper is on a family of new graphical user interfaces
(GUI) that we have equipped our previously reported In-Situ Partial order (ISP,
[1–4]) tool with, as our first attempt to meet the above goals. Information is
presented by the ISP tool through a portable Java based GUI and an optional
Microsoft Visual Studio GUI, and an Eclipse GUI (development in progress)
that will integrate and extend these views.

Being a formal verification tool, ISP guarantees to locate deadlocks, C asser-
tion violations, resource leaks, and many invalid uses of MPI calls for a chosen
? Supported in part by NSF CNS-00509379, Microsoft HPC Institutes Program, and

the Mathematical, Information, and Computational Science Division subprogram
of the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.



application and its test harness. Being a dynamic verification tool, ISP does all
its verification by “cleverly” running the MPI application on a standard com-
puter (say, a laptop). The main idea (cleverness) in ISP is in the fact that it
explores only certain process schedules, after which it proclaims the program to
be free from these classes of errors. A concurrent program with five processes,
with each process taking part in five sequential steps has potentially 10 billion
interleavings (schedules).3 However, it can be easily seen that large groups of
interleavings are totally equivalent: either they do not trigger a bug, or they
all do. For example, an interleaving in which an MPI_send is posted before its
matching non-deterministic MPI_Recv is equivalent to the one in which things
are posted oppositely (these are independent actions [5]). A conventional test-
ing tool does not take advantage of this independence, and may present all the
interleavings as traces, when in fact the essence of all interleavings might have
been summarized by picking any one of the interleavings. By avoiding this expo-
nential interleaving exploration, ISP can both run far more efficiently and also
present only the relevant interleavings.

ISP determines what is a relevant interleaving at runtime. The main idea
can be explained using the example of an MPI program containing one wild-
card receive (P0:: recv(from *)) and three potentially matching MPI sends
(P1::send(to P0), P2::send(to P0), and P3::send(to P0)). ISP will, at run-
time, (i) determine all MPI sends that can match the wildcard receive (say only
the sends from P1 and P2 can match P0’s receive), (ii) dynamically rewrite the
wildcard receive to the two specific receives, and (iii) replay the entire program
for each such match (i.e., issue P0:: recv(from P1), run the whole program,
restart all MPI processes, and run again, now issuing P0:: recv(from P2)). In
this manner, ISP generates relevant alternate interleavings only if non-deterministic
actions are present. For programs that are heavily non-deterministic, ISP will ex-
plore a large number of interleavings. However, in practice, most MPI programs
are deterministic. For ParMETIS, a 14k LOC program, ISP generated exactly
one interleaving [2]; the number of possible interleavings is astronomical.

The results produced by any tool (including ISP) cannot be trusted if the
underlying MPI library does not conform to the MPI standard, if the user does
not model a sufficient number of processes, or the user drives the application with
limited ranges of data. More than these well-known restrictions of any tool, there
are many important, but often overlooked violations of assumptions possible with
MPI debugging tools. First, the MPI standard provides considerable latitude
for conforming implementations, while we run the ISP tool on specific MPI
platforms. Here, one of the most important features in the ISP tool is the notion
of completes-before (CB). Briefly, ISP intercepts user’s MPI program actions
using the PMPI mechanism, and even deliberately delays and/or issues these
actions into the MPI runtime. It does this in its quest to discover the full extent
of non-determinism (e.g., all sends matching a wildcard receive). ISP relies on
the completes-before graph to achieve this goal. Therefore, even if run on a

3 The mathematical derivation to calculate the number of riffle shuffles of five decks
of five cards applies here.

2



fixed platform that has a specialized implementation of the MPI standard, ISP
gives the effect of running on any other MPI-compliant platform. We define
completes-before to be the partial order of MPI action occurrences that must be
guaranteed by all standards-compliant MPI libraries. After encountering many
non-intuitive (but correct) MPI examples, we realized that the completes-before
graph can help users understand such examples. The display of completes-before
is an important part of ISP’s GUI.

Since MPI is a complex and rich API, it is important for MPI program
verification tools to display helpful information about MPI operation scheduling.
With the growing use of API functions with complex non-blocking and/or out of
order completion semantics in concurrent programming, concurrency debugging
tools that explicate API behavior can prove to be invaluable to their users. We
later give an example concerning MPI probes that illustrates this issue.

2 Background, Related Work

Frameworks such as the Eclipse Parallel Tools Platform (PTP, [6]), Microsoft’s
Visual Studio, and TotalView are popular among MPI programmers. Shaeli [7]
has explored MPI program trace visualizations. These tools do not have ideas
similar to ours. The tool CHESS [8, 9] from Microsoft Research focuses on thread
verification. It includes many useful features such as displaying schedule strings
that lead to an error, and pre-emption control techniques that help users root-
cause errors. Because of the differences between threading and message passing,
these ideas are not directly applicable to MPI.

A Jumpshot (or other [10]) view of an MPI program execution driven by
simple test harnesses often shows the temporal clustering and recurrence of MPI
communications. Such tests (and hence visualizations) rarely involve the elusive
‘corner case’ interleavings that lead to bugs. A designer may try to ‘jiggle’ the
schedule by inserting random delay statements. While often effective for thread
programs, this rarely has the intended effect with MPI programs for several
reasons, the main reason being that in most MPI programs, executions fall into
a handful of equivalence classes. Thus, most schedule perturbations cause only
the order of independent actions to swap. In addition, random delay statements
add delays that affect the computational speed even where things do not matter.

Consider a simple example of an MPI program execution where three MPI
commands are posted – one being a wildcard receive and the other two being two
competing sends that try to match this receive. After all these commands are
posted, the external world has no control over which send matches the wildcard
receive. Inserting noisemakers into MPI library implementation codes is infea-
sible in most cases (e.g., commercial MPI libraries). Even if arranged through
PMPI, there is only so much MPI runtime control one can obtain. In other words,
a designer is left with ineffective control over permuting MPI non-deterministic
choices. We need a systematic search over all such dependency inducing situa-
tions. Dynamic partial order reduction (DPOR, [11]) offers that route. Our brand
of MPI-specific DPOR is Partial Order avoiding Elusive interleavings (POE) [1]

3



– the workhorse behind our ISP tool [1–4]. This paper is on equipping ISP –
that has powerful core algorithms – with a commensurately powerful set of user-
interface facilities. With this combination, users are not flooded in their visual
displays with unnecessary (equivalent) schedule variations – a major hindrance
when learning MPI and/or when debugging a large-scale MPI program.

High-performance libraries such as MPI have many subtle features that rou-
tinely confound even MPI experts. We have given the following “quiz” to many
MPI experts and found them most often failing the test. The quiz is: Can the
MPI_Irecv of P2 be matched by the MPI_Isend(to P2) issued by P1?4.

P0: MPI_Isend(to P2, &h) ; MPI_Barrier() ; MPI_Wait(&h);...

P1: MPI_Barrier() ; MPI_Isend(to P2, &h); MPI_Wait(&h);...

P2: MPI_Irecv(from *, &h) ; MPI_Barrier() ; MPI_Wait(&h);...

To summarize, today’s MPI debugging tools have the following deficiencies:

– They flood the graphical view with relevant (few) and irrelevant (most)
variations of executions, unable to highlight which is which. This causes
cognitive overload.

– They are not equipped with means to determine relevant schedules (nothing
like a DPOR algorithm for instance), as well as means to enforce these
schedules during dynamic verification. This causes bugs to be missed. A
revealing display is the short programs listed in [12] where such omissions
can be starkly seen.

– They do not educate MPI users concerning the subtleties of the API. They
do not inform MPI users to anticipate portability bugs – where speed-paths
change. (In the above quiz, in some platforms, P0’s send may be the one
found matching the wildcard receive most of the time; in a new platform,
P1’s send may be the one.)

POE Recap: Here, we summarize how POE handles our ‘quiz’ above: ISP will
(i) trap the MPI operations using PMPI, (ii) delay issuing the Isend from P0
and Irecv from P2, (iii) come to MPI_Barrier which is now issued into the
MPI runtime, and (iv) now find that MPI_Isend of P1 is also eligible to match
with P2’s Irecv. At this point, ISP dynamically rewrites MPI_Irecv(from *)
into MPI_Irecv(from P0) and MPI_Irecv(from P1), and does the following. It
first issues the set {P2:MPI_Irecv(from P0), P0:MPI_Isend(to P2)} and fin-
ishes the rest of the program according to POE. Then, in another restart and
replay of the entire program, it will issue the set {P2:MPI_Irecv(from P1),
P1:MPI_Isend(to P2)} and finishes the rest of the program according to POE.
Changing the order in which the MPI operations from P0 and P1 are processed
is justified because of their independence [5] – an assumption met by all MPI
libraries we have come across. In fact, what POE is trying is to simulate all pos-
sible orderings and platform conditions under which the executions may happen.
Notice that ISP does not generate different interleavings corresponding to the
posting order of P0’ and P2’s first MPI calls.

4 The sly answer is: “Yes, otherwise we would not be asking this question!”

4



Fig. 1: Visual Studio Plug-in of ISP

Our Contributions: ISP has been released [13] for free download, runs on
Windows, MAC OS/X, and Linux, handles several MPI libraries, and has been
very effective in finding subtle bugs in large programs [2]. ISP has been used to
verify the following large-scale programs, including: (1) the 14k LOC ParMETIS
hypergraph partitioner (for two processes, we can verify ParMETIS in under five
seconds on a laptop), (2) MADRE [14], (3) the MPI-BLAST program for genome
sequencing [15], (4) the ADLB program [16], and (5) the Inter Radiosity Solver
(IRS) from LLNL [17]. ISP has also handled most of the examples from Pacheco’s
widely used MPI book [18], thus making it an ideal tool for learning MPI. We
now summarize features of ISP’s GUI.
• All displays of ISP’s user interface are arranged through a detailed trace file
that is post-verification processed. The size of the trace file is small because of
POE that generates and displays only the relevant interleavings.
• For alternate wildcard matches, ISP uses intuitive graphics (dotted lines for
alternative matches). This way, one can visualize non-deterministic choices with-
out “display explosion”.
• ISP has Visual Studio (VS) integration as well as a Java GUI. Its Eclipse inte-
gration is in progress. The VS interface makes ISP truly a push-button model-
checker of actual MPI codes – a user-friendly debugger look and feel.
• The Visual Studio interface displays all communication matches, opening win-
dows dynamically based on the number of matches to be shown.
• It allows the user to cut into the underlying Visual Studio debugger at any
selected highlight point (e.g. communication match or deadlock). This allows a
smooth transition into conventional debugging when needed (a facility that we
hope to develop further during ISP’s integration into the Eclipse PTP.

5



• The fact that many collectives do not possess the barrier semantics comes out
elegantly through the CB graph.
• Mouse-driven tool tips reveal the details of the underlying MPI commands.

Fig. 2: Non-deadlocking Interleaving

Fig. 3: Deadlocking Interleaving

3 Basics of ISP’s User Interface

Consider the MPI example:

P0: Isend(to 1, &h) ; Barrier() ; Wait(&h) ; ...

P1: Irecv(from *, &h); Barrier() ; Recv(from 2); Wait(&h); ...

P2: Barrier() ; Isend(to 1, &h); Wait(&h) ; ...

Here, we highlight the MPI communication sources and targets and the commu-
nication handles. A user wanting to formally verify this program under ISP can
launch the intuitive VS Plug-in of ISP, displaying the figure shown in Figure 1.

6



Fig. 4: IntraCB for Deadlocking Interleaving

Fig. 5: IntraCB and InterCB Graphs

Fig. 6: Iprobe Match for Interleaving 1

7



Fig. 7: Iprobe Match for Interleaving 2

Next, the user runs ISP whose POE algorithm will recognize that the Irecv
of P1 has two potential send matches. (Note: there are many VS GUI views
in this sequel; we refrain from presenting them owing to the lack of clarity on
paper.) It runs two interleavings, finding a deadlock in one interleaving. The user
may then single-step the execution trace. When MPI_Barrier is encountered,
the display adjusts itself, showing all processes involved in the barrier. Soon the
user reaches the deadlock point, at which time the user invokes the transition
navigator, obtaining a tree display of the transitions invoked. Those transitions
that are not matched yet are highlighted in red color in this display. At this
point, the user may cut into Visual Studio for more incisive debugging.

Now, the user may be interested in finding the root cause of the bug. They
display the communication matches which shows the two interleavings that this
example has. The wildcard receive – source of non-determinism – is shown in red.
The interleaving in which P0’s Isend matches this receive (Figure 2) does not
lead to a deadlock. The tool tips show the details of each icon (MPI command,
file/line). The interleaving in which P2’s Isend matches this receive (Figure 3)
does lead to a deadlock.

The user further wants to drill down and locate the bug. They display the
full completes-before graph with respect to a chosen group of nodes. Completes-
before (CB) has two components: intraCB which shows the process-local part of
CB, and interCB which shows how the CB graph builds across processes. They
may merely display the intra completes-before relation (Figure 4) that shows
the completes-before graph corresponding to the deadlocking interleaving. The
completes-before graph shows that an Isend issued before an MPI_Barrier need
not complete before the barrier; it can complete afterwards! This tells the user
that both wildcard matches are possible. The CB graph also tells the user how
different platforms may process the MPI commands out of order. They may
choose to display both intraCB and interCB as in Figure 5. This tour should
tell the reader that ISP’s MPI-specific GUIs are able to say a lot within a small
amount of space. We also wish to point out the conceptual depth of these displays
that can help a beginner learn MPI programming reliably.

8



How Completes-Before (CB) is determined: The MPI standard requires
non-overtaking in the sense that two MPI messages send from Pi and Pj arrive in
that order (per tag and communicator). Thus, if there is a Send(to P1) followed
by another Send(to P1) in an MPI program, these commands must complete in
order (of course they are always issued in program order). On the other hand, if
a Send(to P1) is followed by a Send(to P2) in an MPI process, these sends may
finish out of order. Imagine the first one sending a large message while the second
one sends a short message; in this case, it would be inefficient to wait for the first
send to finish. It also is no violation of non-overtaking to allow the second send to
finish. The full definition of the CB relation appears in [1]. Our formalization of
CB allows us to achieve two objectives at once: (i) schedule actions within POE
so that the maximal extent of wildcard receive non-determinism is discovered
(the same idea is also followed for wildcard probes); (ii) it also displays to the
MPI user how each platform may reorder the commands issued from the very
same MPI process. Of course, the display of relevant interleavings by ISP avoids
exploding the view with a display of interleaving variations of commands issued
from different processes.
Probes De-Mystified An adaptation of a Fortran example [19] concerning
probes is as follows:

P0: Ssend(to 1); ...

P1: Probe(from *); Recv(from *); Recv(from *); ...

P2: Ssend(to 1); ...

In the above example, either P0’s Ssend(to 1) or P2’s Ssend(to 1) can enable
P1’s Probe(from *). In a regular MPI platform, if P0’s Ssend(to 1) enables
the P2’s Probe(from *), one can expect P0’s Ssend(to 1) to match the Recv
command of P1 following the Probe. If this program is ported and run on a
different platform, P2’s Ssend(to 1) may match the same Recv command. From
[19], a designer will likely recall that suppose a Probe matches a certain send,
then the following Recv command need not match the same send! What if the
expert forgets this fact and is baffled by the inundation of traces shown by a
conventional debugger? ISP would, on the other hand produce a display shown in
Figures 6 and 7. This display very clearly shows which send the probe matched,
and which send that the following receive actually matched.

4 Conclusions

Formal verification tools that display concurrency concepts are useful for con-
current program understanding and incisive debugging. With the multi-core and
peta-scale revolutions looming, such efforts are long overdue. Almost all concur-
rency debugging runs into exponential variations in executions. In addition to
interleaving reduction through partial order reduction, a vast array of “exponen-
tial compression” methods await to be exploited sufficiently in the area of MPI
programming: process symmetries and data-space symmetries are two examples.

9



The current approach recommended with ISP (and most concurrency tools, for
that matter) is to downscale a problem before such a tool is used. This is not
sufficient for many bug classes, including resource bugs, and much work remains
in this regard.

References

1. Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. Dynamic
verification of MPI programs with reductions in presence of split operations and
relaxed orderings. In Aarti Gupta and Sharad Malik, editors, CAV, volume 5123
of Lecture Notes in Computer Science. Springer, 2008.

2. Anh Vo, Sarvani Vakkalanka, Michael DeLisi, Ganesh Gopalakrishnan, Robert M.
Kirby, and Rajeev Thakur. Formal verification of practical MPI programs. In
Principles and Practices of Parallel Programming (PPoPP), pages 261–269, 2009.

3. Subodh Sharma, Sarvani Vakkalanka, Ganesh Gopalakrishnan, Robert M. Kirby,
Rajeev Thakur, and William Gropp. A formal approach to detect functionally
irrelevant barriers in MPI programs. In EuroPVM/MPI, pages 265–273, 2008.
LNCS 5205.

4. Sarvani Vakkalanka, Michael DeLisi, Ganesh Gopalakrishnan, Robert M. Kirby,
Rajeev Thakur, and William Gropp. Implementing efficient dynamic formal verifi-
cation methods for mpi programs. In EuroPVM/MPI, pages 248–256, 2008. LNCS
5205.

5. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 2000.

6. http://www.eclipse.org/ptp.
7. Basile Schaeli, Ali Al-Shabibi , and Roger D. Hersch. Visual debugging of mpi

applications. In EuroPVM/MPI, 2008. LNCS 5205.
8. Madan Musuvathi and Shaz Qadeer. Iterative context bounding for systematic

testing of multithreaded programs. In PLDI, pages 446–455, 2007.
9. http://research.microsoft.com/CHESS.

10. Richard Vuduc, Martin Schulz, Dan Quinlan, Bronis de Supinski, and Andreas
Saebjornsen. Improved distributed memory applications testing by message per-
turbation. In PADTAD, 2006.

11. Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL ’05, pages 110–121, 2005.

12. Michael DeLisi. http://www.cs.utah.edu/formal_verification/ISP_Tests.
13. Michael DeLisi. http://www.cs.utah.edu/formal_verification/ISP-release.
14. Stephen F. Siegel and Andrew R. Siegel. MADRE: The Memory-Aware Data

Redistribution Engine. In EuroPVM/MPI, pages 218–226, 2008.
15. http://www.mpiblast.org.
16. Rusty Lusk, Steve Pieper, Ralph Butler, and Anthony Chan. Asynchronous dy-

namic load balancing. http://unedf.org/content/talks/Lusk-ADLB.pdf.
17. The IRS Benchmark Code. https://asc.llnl.gov/computing_resources/

purple/archive/benchmarks/irs/.
18. Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.
19. A note on the probe command. http://www.mcs.anl.gov/research/projects/

mpi/mpi-standard/mpi-report-1.1/node50.htm.

10


