Skip to main content

An Efficient Linear Method for the Estimation of Ego-Motion from Optical Flow

  • Conference paper
Pattern Recognition (DAGM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5748))

Included in the following conference series:

Abstract

Approaches to visual navigation, e.g. used in robotics, require computationally efficient, numerically stable, and robust methods for the estimation of ego-motion. One of the main problems for ego-motion estimation is the segregation of the translational and rotational component of ego-motion in order to utilize the translation component, e.g. for computing spatial navigation direction. Most of the existing methods solve this segregation task by means of formulating a nonlinear optimization problem. One exception is the subspace method, a well-known linear method, which applies a computationally high-cost singular value decomposition (SVD). In order to be computationally efficient a novel linear method for the segregation of translation and rotation is introduced. For robust estimation of ego-motion the new method is integrated into the Random Sample Consensus (RANSAC) algorithm. Different scenarios show perspectives of the new method compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. of Comp. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bruss, A.R., Horn, B.K.P.: Passive navigation. Comp. Vis., Graph., and Im. Proc. 21, 3–20 (1983)

    Article  Google Scholar 

  4. Chiuso, A., Brockett, R., Soatto, S.: Optimal structure from motion: Local ambiguities and global estimates. Int. J. of Comp. Vis. 39(3), 195–228 (2000)

    Article  MATH  Google Scholar 

  5. Clauss, M., Bayerl, P., Neumann, H.: Segmentation of independently moving objects using a maximum-likelihood principle. In: Lafrenz, R., Avrutin, V., Levi, P., Schanz, M. (eds.) Autonome Mobile Systeme 2005, Informatik Aktuell, pp. 81–87. Springer, Berlin (2005)

    Google Scholar 

  6. Farnebaeck, G.: Polynomial expansion for orientation and motion estimation. PhD thesis, Dept. of Electrical Engineering, Linkoepings universitet (2002)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Gibson, J.J.: The Perception of the Visual World. Houghton Mifflin, Boston (1950)

    Google Scholar 

  9. Heeger, D.J., Jepson, A.D.: Subspace methods for recovering rigid motion i: Algorithm and implementation. Int. J. of Comp. Vis. 7(2), 95–117 (1992)

    Article  Google Scholar 

  10. Helmholtz, H.: Treatise on physiological optics. In: Southhall, J.P, (ed.) (1925)

    Google Scholar 

  11. Kanatani, K.: 3-d interpretation of optical-flow by renormalization. Int. J. of Comp. Vis. 11(3), 267–282 (1993)

    Article  Google Scholar 

  12. Lobo, N.V., Tsotsos, J.K.: Computing ego-motion and detecting independent motion from image motion using collinear points. Comp. Vis. and Img. Underst. 64(1), 21–52 (1996)

    Article  Google Scholar 

  13. Longuet-Higgins, H.C., Prazdny, K.: The interpretation of a moving retinal image. Proc. of the Royal Soc. of London. Series B, Biol. Sci. 208(1173), 385–397 (1980)

    Article  Google Scholar 

  14. MacLean, W.J.: Removal of translation bias when using subspace methods. IEEE Int. Conf. on Comp. Vis. 2, 753–758 (1999)

    Google Scholar 

  15. MacLean, W.J., Jepson, A.D., Frecker, R.C.: Recovery of egomotion and segmentation of independent object motion using the EM algorithm. Brit. Mach. Vis. Conf. 1, 175–184 (1994)

    Google Scholar 

  16. Pauwels, K., Van Hulle, M.M.: Segmenting independently moving objects from egomotion flow fields. In: Proc. of the Early Cognitive Vision Workshop (ECOVISION 2004), Isle of Skye, Scotland (2004)

    Google Scholar 

  17. Pauwels, K., Van Hulle, M.M.: Robust instantaneous rigid motion estimation. Proc. of Comp. Vis. and Pat. Rec. 2, 980–985 (2005)

    Google Scholar 

  18. Pauwels, K., Van Hulle, M.M.: Optimal instantaneous rigid motion estimation insensitive to local minima. Comp. Vis. and Im. Underst. 104(1), 77–86 (2006)

    Article  Google Scholar 

  19. Torr, P.H.S.: Outlier Detection and Motion Segmentation. PhD thesis, Engineering Dept., University of Oxford (1995)

    Google Scholar 

  20. Zhang, T., Tomasi, C.: Fast, robust, and consistent camera motion estimation. Proc. of Comp. Vis. and Pat. Rec. 1, 164–170 (1999)

    Google Scholar 

  21. Zhuang, X., Huang, T.S., Ahuja, N., Haralick, R.M.: A simplified linear optic flow-motion algorithm. Comp. Graph. and Img. Proc. 42, 334–344 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raudies, F., Neumann, H. (2009). An Efficient Linear Method for the Estimation of Ego-Motion from Optical Flow. In: Denzler, J., Notni, G., Süße, H. (eds) Pattern Recognition. DAGM 2009. Lecture Notes in Computer Science, vol 5748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03798-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03798-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03797-9

  • Online ISBN: 978-3-642-03798-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics