Skip to main content

Use of Coloured Tracers in Gas Flow Experiments for a Lagrangian Flow Analysis with Increased Tracer Density

  • Conference paper
Pattern Recognition (DAGM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5748))

Included in the following conference series:

  • 2657 Accesses

Abstract

In this article a 3-d particle tracking velocimetry system (PTV system) is presented which enables the investigation of relatively fast gaseous (air) flows and tiny turbulences in a small scaled wind tunnel. To satisfy the demand of a high spatial and temporal resolution, a sufficiently high tracer particle concentration has to be applied to the gas. Solving the correspondence problem among different cameras becomes extremely difficult due to ambiguities: Each tracer has to be found in all pictures of the different views during many successive time steps. Here, the correspondence problem is facilitated by the use of coloured particles and the application of suitable classifiers for particle classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albrecht, P., Michaelis, B.: Improvement of the Spatial Resolution of an Optical 3–D Measurement Procedure. IEEE Transactions on Instrumentation and Measurement 47(1), 158–162 (1998)

    Article  Google Scholar 

  2. Albertz, J., Wiggenhagen, M.: Guide for Photogrammetry and Remote Sensing, 5th edn. Herbert–Wichmann Verlag (2009)

    Google Scholar 

  3. Bordas, R., Bendicks, C., Kuhn, R., Wunderlich, B., Thevenin, D., Michaelis, B.: Coloured tracer particles employed for 3d-ptv in gas flows. In: ISFV13 - 13th International Symposium on Flow Visualization, and FLUVISU12 - 12th French Congress on Visualization in Fluid Mechanics, Paper #93, Nice, July 1-4 (2008)

    Google Scholar 

  4. Chang, C.-C., Lin., C.-J.: LIBSVM: a library for support vector machines (2009), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  5. Ouellette, N.T., Xu, H., Bodenschatz, E.: A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Experiments in Fluids 40(2), 301–313 (2006)

    Article  Google Scholar 

  6. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Coll. Interface Sci. 179, 298–310 (1996)

    Article  Google Scholar 

  7. ANSYS: FLUENT Flow Modeling Software, http://www.fluent.com

  8. Ramanath, R., Snyder, W.E., Bilbro, G.L., Sander, W.A.: Demosaicking methods for Bayer color arrays. Journal of Electronic Imaging 11(2), 306–315 (2002)

    Article  Google Scholar 

  9. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  10. Herbrich, R.: Learning kernel Classifiers: theory and algorithms, ISBN:0-262-08306-X (2003)

    Google Scholar 

  11. Kuhn, R.W., Bordas, R., Wunderlich, B., Michaelis, B., Thevenin, D.: Colour class identification of tracers using artificial neural networks. In: 10th International Conference on Engineering Applications of Neural Networks, Thessaloniki, Greece (2007); 13/2/1-13/2/8

    Google Scholar 

  12. Maas, H.G.: Digitale Photogrammetrie in der dreidimensionalen Strömungsmesstechnik. Dissertation ETH Zürich Nr. 9665 (1992)

    Google Scholar 

  13. Maas, H.-G.: Complexity analysis for the determination of image correspondences in dense spatial target fields. In: International Archives of Photogrammetry and Remote Sensing, vol. XXIX, pp. 102–107 (1992)

    Google Scholar 

  14. Nissen, S., Nemerson, E.: Fast Artifical Neural Network, FANN (2009), http://leenissen.dk/fann/

  15. Ruhnau, P., Guetter, C., Schnörr, C.: A Variational Approach for Particle Tracking Velocimetry, Measurement. Science and Technology 16, 1449–1458 (2005)

    Google Scholar 

  16. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice, ISBN:978-0-262-19547-8 (2006)

    Google Scholar 

  17. Wu, T.F., Lin, C.J.: Probability Estimates for Multi-class Classification by Pair wise Coupling. Journal of Machine Learning Research 5, 975–1005 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bendicks, C., Tarlet, D., Michaelis, B., Thévenin, D., Wunderlich, B. (2009). Use of Coloured Tracers in Gas Flow Experiments for a Lagrangian Flow Analysis with Increased Tracer Density. In: Denzler, J., Notni, G., Süße, H. (eds) Pattern Recognition. DAGM 2009. Lecture Notes in Computer Science, vol 5748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03798-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03798-6_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03797-9

  • Online ISBN: 978-3-642-03798-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics