Abstract
A d-gem is a { + , − ,×}-circuit having very few ×-gates and computing from {x} ∪ ℤ a univariate polynomial of degree d having d distinct integer roots. We introduce d-gems because they could help factoring integers and because their existence for infinitely many d would blatantly disprove a variant of the Blum-Cucker-Shub-Smale conjecture. A natural step towards validating the conjecture would thus be to rule out d-gems for large d. Here we construct d-gems for several values of d up to 55. Our 2n-gems for n ≤ 4 are skew, that is, each { + , − }-gate adds an integer. We prove that skew 2n-gems if they exist require n { + , − }-gates, and that these for n ≥ 5 would imply new solutions to the Prouhet-Tarry-Escott problem in number theory. By contrast, skew d-gems over the real numbers are shown to exist for every d.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1997)
Borodin, A., Moenck, B.: Fast modular transforms. Journal of Computer and Systems Science 8(3), 366–386 (1974)
Borwein, A., Ingalls, C.: The Prouhet-Tarry-Escott Problem Revisited. Enseign. Math. 40, 3–27 (1994)
Bremner, A.: When can (((X 2 − P)2) − Q)2 − R)2 − S 2 split into linear factors? Experimental Mathematics 17(4), 385–390 (2008)
Bürgisser, P.: On implications between P-NP-hypotheses: Decision versus computation in algebraic complexity. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 3–17. Springer, Heidelberg (2001)
Cheng, Q.: Straight Line Programs and Torsion Points on Elliptic Curves. In: Comput. Complex, vol. 12(3-4), pp. 150–161. Birkhauser Verlag, Basel (2004)
Crandall, R.: Topics in advanced scientic computation, TELOS, the Electronic Library of Science. Springer, New York (1996)
Crandall, R., Pomerance, C.: Primes numbers: a computational perspective. Springer, New York (2001)
Dilcher, K.: Nested squares and evaluations of integer products. Experimental Mathematics 9(3), 369–372 (2000)
Dolwart, H., Brown, O.: The Tarry-Escott problem. Proc. Amer. Math. Soc. 44, 613–626 (1937)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)
Knuth, D.: The art of computer programming, 2nd edn. Seminumerical algorithms, vol. 2. Addison-Wesley, Reading (1969) (1981)
Lipton, R.: Straight-line complexity and integer factorization. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 71–79. Springer, Heidelberg (1994)
Paterson, M., Stockmeyer, L.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Computing 2(1), 60–66 (1973)
Rojas, M.: A Direct Ultrametric Approach to Additive Complexity and the Shub-Smale Tau Conjecture (2003), http://arxiv.org/abs/math/0304100
Rosen, K.: Elementary number theory and its applications, 3rd edn. Addison-Wesley, Reading (1993)
Shuwen, C.: The PTE Problem, http://euler.free.fr/eslp/TarryPrb.htm
Smale, S.: Mathematical problems for the next century. In: Arnold, V., Atiyah, M., Lax, P., Mazur, B. (eds.) Mathematics: Frontiers and Perspectives 2000. AMS, Providence (2000)
Strassen, V.: Einige Resultate über Berechnungskomplexität. Jahresberichte der DMV 78, 1–8 (1976)
Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)
Weisstein, E.: The Prouhet-Tarry-Escott Problem, MathWorld–Wolfram (2009), http://mathworld.wolfram.com/Prouhet-Tarry-EscottProblem.html
http://wims.unice.fr/wims/en_tool~number~twosquares.en.html (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borchert, B., McKenzie, P., Reinhardt, K. (2009). Few Product Gates But Many Zeros. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-03816-7_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03815-0
Online ISBN: 978-3-642-03816-7
eBook Packages: Computer ScienceComputer Science (R0)