Skip to main content

Parameterized Complexity Classes under Logical Reductions

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

  • 864 Accesses

Abstract

The parameterized complexity classes of the W-hierarchy are usually defined as the problems reducible to certain natural complete problems by means of fixed-parameter tractable (fpt) reductions. We investigate whether the classes can be characterised by means of weaker, logical reductions. We show that each class W[t] has complete problems under slicewise bounded-variable first-order reductions. These are a natural weakening of slicewise bounded-variable LFP reductions which, by a result of Flum and Grohe, are known to be equivalent to fpt-reductions. If we relax the restriction on having a bounded number of variables, we obtain reductions that are too strong and, on the other hand, if we consider slicewise quantifier-free first-order reductions, they are considerably weaker. These last two results are established by considering the characterisation of W[t] as the closure of a class of Fagin-definability problems under fpt-reductions. We show that replacing these by slicewise first-order reductions yields a hierarchy that collapses, while allowing only quantifier-free first-order reductions yields a hierarchy that is provably strict.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Y., Flum, J.: Machine characterization of the classes of the W-hierarchy. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 114–127. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Dahlhaus, E.: Reduction to NP-complete problems by interpretations. In: Börger, E., Rödding, D., Hasenjaeger, G. (eds.) Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 357–365. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  3. Dahlhaus, E.: Skolem normal forms concerning the least fixpoint. In: Börger, E. (ed.) Computation Theory and Logic. LNCS, vol. 270, pp. 101–106. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  4. Dawar, A.: How many first-order variables are needed on finite ordered structures? In: Artëmov, S.N., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 489–520. College Publications (2005)

    Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I—basic results. Theoretical Computer Science 141, 109–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  7. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31, 113–145 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and Computation 187, 291–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flum, J., Grohe, M.: Parameterized complexity theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  10. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  11. Immerman, N.: Relational queries computable in polynomial time. Inf. Control 68, 86–104 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  13. Lovász, L., Gács, P.: Some remarks on generalized spectra. Mathematical Logic Quarterly 23, 547–554 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sipser, M.: Borel sets and circuit complexity. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 61–69 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dawar, A., He, Y. (2009). Parameterized Complexity Classes under Logical Reductions. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics