Skip to main content

How to Use Spanning Trees to Navigate in Graphs

(Extended Abstract)

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

In this paper, we investigate three strategies of how to use a spanning tree T of a graph G to navigate in G, i.e., to move from a current vertex x towards a destination vertex y via a path that is close to optimal. In each strategy, each vertex v has full knowledge of its neighborhood N G [v] in G (or, k-neighborhood D k (v,G), where k is a small integer) and uses a small piece of global information from spanning tree T (e.g., distance or ancestry information in T), available locally at v, to navigate in G. We investigate advantages and limitations of these strategies on particular families of graphs such as graphs with locally connected spanning trees, graphs with bounded length of largest induced cycle, graphs with bounded tree-length, graphs with bounded hyperbolicity. For most of these families of graphs, the ancestry information from a BFS-tree guarantees short enough routing paths. In many cases, the obtained results are optimal up to a constant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. In: 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communic., pp. 48–55. ACM Press, New York (1999)

    Google Scholar 

  2. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs. SIAM J. Discrete Math. 11, 437–455 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstädt, A., Bang Le, V., Spinrad, J.P.: Graph Classes: A Survey, Philadelphia. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  4. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. In: SoCG 2008, pp. 59–68 (2008)

    Google Scholar 

  5. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Mathematics 307, 2008–2029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dragan, F.F., Matamala, M.: Navigating in a graph by aid of its spanning tree. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 788–799. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Dragan, F.F., Xiang, Y.: How to use spanning trees to navigate in graphs, full version, http://www.cs.kent.edu/~dragan/MFCS2009-journal.pdf

  8. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.: Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In: 2nd USENIX/ACM Symp. on Networked Systems Design and Implementation (2005)

    Google Scholar 

  9. Fraigniaud, P.: Small Worlds as Navigable Augmented Networks: Model, Analysis, and Validation. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 2–11. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice. In: SPAA 2007, 154–160 (2007)

    Google Scholar 

  11. Garg, V.K., Agarwal, A.: Distributed maintenance of a spanning tree using labeled tree encoding. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 606–616. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Gartner, F.C.: A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms, Technical Report IC/2003/38, Swiss Federal Institute of Technology (EPFL) (2003)

    Google Scholar 

  13. Gavoille, C.: Routing in distributed networks: Overview and open problems. ACM SIGACT News - Distributed Computing Column 32 (2001)

    Google Scholar 

  14. Gavoille, C., Peleg, D., Pérennès, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53, 85–112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc networks: A taxonomy. In: Ad Hoc Wireless Networking, pp. 103–136. Kluwer, Dordrecht (2004)

    Chapter  Google Scholar 

  16. Gromov, M.: Hyperbolic Groups. In: Gersten, S.M. (ed.) Essays in group theory. MSRI Series, vol. 8, pp. 75–263 (1987)

    Google Scholar 

  17. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jacquet, P., Viennot, L.: Remote spanners: what to know beyond neighbors. In: IPDPS 2009, pp. 1–15 (2009)

    Google Scholar 

  19. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In: 6th ACM/IEEE MobiCom., pp. 243–254. ACM Press, New York (2000)

    Google Scholar 

  20. Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: STOC 2000, pp. 163–170. ACM, New York (2000)

    Google Scholar 

  21. Kleinberg, R.: Geographic routing using hyperbolic space. In: INFOCOM 2007, pp. 1902–1909 (2007)

    Google Scholar 

  22. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. In: PODC, pp. 63–72. ACM, New York (2003)

    Google Scholar 

  23. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. PNAS 102, 11623–11628 (2005)

    Article  Google Scholar 

  24. Linial, N., London, E., Rabinovich, Y.: The Geometry of Graphs and Some of its Algorithmic Applications. Combinatorica 15, 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peleg, D.: Proximity-Preserving Labeling Schemes and Their Applications. J. of Graph Theory 33, 167–176 (2000)

    Article  MATH  Google Scholar 

  26. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Math. Appl. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  27. Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographical routing without location information. In: Proceedings of MobiCom 2003, pp. 96–108 (2003)

    Google Scholar 

  28. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Santoro, N., Khatib, R.: Labelling and Implicit Routing in Networks. The Computer Journal 28(1), 5–8 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shavitt, Y., Tankel, T.: On internet embedding in hyperbolic spaces for overlay construction and distance estimation. In: INFOCOM 2004 (2004)

    Google Scholar 

  31. Thorup, M., Zwick, U.: Compact routing schemes. In: 13th Ann. ACM Symp. on Par. Alg. and Arch., July 2001, pp. 1–10 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Xiang, Y. (2009). How to Use Spanning Trees to Navigate in Graphs. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics