Abstract
The synthesis of a reactive system with respect to an ω-regular specification requires the solution of a graph game. Such games have been extended in two natural ways. First, a game graph can be equipped with probabilistic choices between alternative transitions, thus allowing the modeling of uncertain behavior. These are called stochastic games. Second, a liveness specification can be strengthened to require satisfaction within an unknown but bounded amount of time. These are called finitary objectives. We study, for the first time, the combination of stochastic games and finitary objectives. We characterize the requirements on optimal strategies and provide algorithms for computing the maximal achievable probability of winning stochastic games with finitary parity or Streett objectives. Most notably, the set of states from which a player can win with probability 1 for a finitary parity objective can be computed in polynomial time, even though no polynomial-time algorithm is known in the nonfinitary case.
This research was supported in part by the Swiss National Science Foundation under the Indo-Swiss Joint Research Programme, by the European Network of Excellence on Embedded Systems Design (ArtistDesign), and by the European project Combest.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Henzinger, T.A.: Finitary fairness. In: LICS 1994, pp. 52–61. IEEE, Los Alamitos (1994)
Chatterjee, K.: Concurrent games with tail objectives. Theoretical Computer Science 388, 181–198 (2007)
Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochastic Rabin and Streett games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878–890. Springer, Heidelberg (2005)
Chatterjee, K., Henzinger, T.A.: Finitary winning in ω-regular games. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 257–271. Springer, Heidelberg (2006)
Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games. Technical Report: UCB/EECS-2007-120 (2007)
Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 121–130. SIAM, Philadelphia (2004)
de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS 2000, pp. 141–154. IEEE, Los Alamitos (2000)
Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: LICS 1997, pp. 99–110. IEEE, Los Alamitos (1997)
Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: FOCS 1988, pp. 328–337. IEEE, Los Alamitos (1988)
Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC 1982, pp. 60–65. ACM Press, New York (1982)
Horn, F.: Dicing on the streett. IPL 104, 1–9 (2007)
Horn, F.: Faster algorithms for finitary games. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 472–484. Springer, Heidelberg (2007)
Horn, F.: Random Games. PhD thesis, Université Denis-Diderot and RWTH, Aachen (2008)
Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic Logic 63(4), 1565–1581 (1998)
Piterman, N., Pnueli, A.: Faster solution of Rabin and Streett games. In: LICS 2006, pp. 275–284. IEEE, Los Alamitos (2006)
Zielonka, W.: Perfect-information stochastic parity games. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 499–513. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatterjee, K., Henzinger, T.A., Horn, F. (2009). Stochastic Games with Finitary Objectives. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-03816-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03815-0
Online ISBN: 978-3-642-03816-7
eBook Packages: Computer ScienceComputer Science (R0)