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Abstract. Resource usage is one of the most important characteristics
of programs. Automatically generated information about resource usage
can be used in multiple ways, both during program development and
deployment. In this paper we discuss and present examples on how such
information is obtained in COSTA, a state of the art static analysis sys-
tem. COSTA obtains safe symbolic upper bounds on the resource usage
of a large class of general-purpose programs written in a mainstream pro-
gramming language such as Java (bytecode). We also discuss the appli-
cation of resource-usage information for code certification, whereby code
not guaranteed to run within certain user-specified bounds is rejected.

1 Introduction

One of the most important characteristics of a program is the amount of re-
sources that its execution will require, i.e., its resource usage. Typical examples
of resources include execution time, memory watermark, amount of data trans-
mitted over the net, etc. Resource usage information has many applications, both
during program development and deployment. Therefore, automated ways of es-
timating resource usage are quite useful and the general area of resource usage
analysis (or resource analysis for short) has received considerable attention.

Statically estimating the resource usage of realistic programs is far from
trivial. Thus, in the current practice, safe resource usage guarantees are only
available for critical applications with strong resource usage constraints. These
include real-time applications, which are required to execute within a certain
maximum amount of time. Such applications are the subject of Worst Case Exe-
cution Time Analysis (WCET analysis for short), which is a quite active research
area. See e.g. [23]. Unfortunately, WCET analysis for mainstream hardware and
software is extremely complicated. On the hardware side, modern computer ar-
chitectures have multiple memory levels and internal pipelining which make it
rather difficult to predict the execution time of machine instructions. On the
software side, accurately estimating the number of times each program loop
and recursion will execute is a rather complex problem. In order to ease the
situation, on the hardware side, real-time applications often run on embedded



systems whose timing behaviour is much more predictable. On the software side,
real-time applications are programmed in restricted versions of general languages
such as Real-Time Java or are designed and implemented using special languages
such as Hume [27] and Timber [1], which are rooted in functional programming
and have tool support for performing WCET analysis. Similarly, when strong
memory usage limitations are in place, the programming constructs allowed are
often very restricted, disallowing recursion or, as in the case of JavaCard, even
strongly discouraging the use of dynamic memory allocation after the initializa-
tion phase of the applet.

In this paper we discuss the main techniques used in COSTA [5], a static
analysis system which allows obtaining safe symbolic upper bounds on the re-
source usage of Java bytecode (JBC for short). COSTA follows the classical
approach to static resource analysis proposed in Wegbreit’s seminal work [57]
and which consists of two phases. First, given a program and a cost model, the
analysis produces cost relations (CRs for short). Second, the systems tries to
obtain closed-form upper-bounds for them. The results are symbolic in the sense
that they do not refer to concrete, platform dependent, resources such as ex-
ecution time, but rather they provide platform-independent information. This
has the advantage that the results are applicable to any implementation of the
Java Virtual Machine (JVM) on any particular hardware. It also has the dis-
advantage that the information cannot refer to platform specific resources such
as run-time. The fact that the analysis handles JBC represents that, at least in
principle, it can deal with general-purpose programs written in a mainstream
programming language such as Java and potentially other languages compiled
to JBC. The upper bounds computed by COSTA can then be compared against
user-provided resource usage specifications. This allows automatically rejecting
code not guaranteed to execute within the specified resources.

Note that, unlike COSTA, previous resource analyses based on Wegbreit’s
approach have been formulated on, less widely used, declarative programming
languages [57,35,44,22]. There are very few approaches for imperative program-
ming languages [25] and, unlike COSTA, they are formulated at the source code
level and they do not follow Wegbreit’s approach. However, analyzing compile
code has wider applicability, since it is quite often the case with Java applications
that the code consumer has access to the bytecode, often bundled in jar files,
but no access to the source code, as usual for commercial software and in mobile
code. In the context of mobile code, programming languages which are compiled
to bytecode and executed on a virtual machine are widely used nowadays. This
is the approach used by Java bytecode and .NET. Mobile code was the motiva-
tion for the concept of Proof-Carrying Code [41]: in order for the mobile code
to be verifiable by the user, security properties (including resource usage limita-
tions) must refer to the code available to the user, i.e., the bytecode, so that it
is possible to check the provided proof and verify that the program satisfies the
requirements (e.g., that the code does not require more than a certain amount
of memory, or that it executes in less than a certain amount of time).
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Among all possible applications of resource analysis, in this work we describe
its application to resource certification, whereby programs are coupled with in-
formation about their resource usage. This information allows deciding whether
the resources used by the program execution are acceptable or not before running
the program. Note that resource usage can be considered a security property of
untrusted mobile code, possibly in the context of proof-carrying code. Programs
whose resource usage is not certified are potentially harmful, since their execu-
tion may require more resources than we are willing to spend or they may even
have monetary cost by executing billable events such as sending text messages or
making http connections on a mobile phone. In fact, mobile devices is one of the
settings where resource certification is more important, because of the limited
computing power typically available on mobile devices.

The rest of the paper is structured as follows. In Section 2 object-oriented
bytecode, in the style of Java bytecode, is briefly described. This is required
to understand the different examples in the paper, which show how resource
analysis of a bytecode program is performed. Then, in Section 3, we describe, by
means of examples, how to obtain CRs from a program and a cost model, whereas
in Section 4 we illustrate how to obtain closed-form upper-bounds for CRs.
Section 5 describes the application of resource analysis to resource certification.
In Section 6 we present an overview on the existing large body of work on
resource analysis. Finally, the conclusions and some venues for future work are
discussed in Section 7.

2 The Context: Object-Oriented Bytecode

In order to simplify the formalization of our analysis, a simple object-oriented
bytecode language is considered, which roughly corresponds to a representative
subset of sequential Java bytecode. We refer to it as simple bytecode. For short,
unless we explicitly mention Java bytecode, all references to bytecode in the
rest of the paper correspond to our simple bytecode. Simple bytecode is able
to handle integers and object creation and manipulation. For simplicity, simple
bytecode does not include advanced features of Java bytecode, such as excep-
tions, interfaces, static methods and fields, access control (e.g., the use of public,
protected and private modifiers) and primitive types besides integers and refer-
ences. Anyway, such features can be easily handled in this framework, as done
in the implementation of the COSTA system.

A bytecode program consists of a set of classes C, partially ordered with
respect to the subclass relation. Each class c ∈ C contains information about
the class it extends, and the fields and methods it declares. Subclasses inherit
all the fields and methods of the class they extend. Each method comes with a
signature m which consists of the class where it is defined, its name and its type.
For simplicity, all methods are supposed to return a value. There cannot be two
methods with the same signature. The bytecode associated to a method m is a
sequence 〈b1, . . . , bn〉 where each bi is a bytecode instruction. Local variables of
a k-ary method are denoted by 〈l0, . . . , ln〉 with n ≥ k−1. In contrast to Java
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public static int binarySearch(int[ ] t, int v, int l, int u) {
int m;
while (l <= u) {

m = (l + u) / 2;
if (t[m] == v) return m;
if (t[m] > v) u = m - 1;
else l = m + 1;

}
return -1;

}

0 : load 2

1 : load 3

2 : ifgt 31

3 : load 2

4 : load 3

5 : add
6 : push 2

7 : div
8 : store 4

9 : load 0

10 : load 4

11 : aload
12 : load 1

13 : ifneq 16

14 : load 4

15 : return

16 : load 0

17 : load 4

18 : aload
19 : load 1

20 : ifleq 26

21 : load 4

22 : push 1

23 : isub
24 : store 3

25 : goto 0

26 : load 4

27 : push 1

28 : add
29 : store 2

30 : goto 0

31 : push -1

32 : return

Fig. 1. A Java source (left) with its corresponding bytecode (right)

source, in bytecode the this reference of instance (i.e., non-static) methods is
passed explicitly as the first argument of the method, i.e., l0 and 〈l1, . . . , lk〉
correspond to the k formal parameters, and the remaining 〈lk+1, . . . , ln〉 are the
local variables declared in the method. For static k-ary methods 〈l0, . . . , lk−1〉 are
used for the formal parameters and 〈lk, . . . , ln〉 for the local variables declared
in the method. Similarly, each field f has a unique signature which consists of
the class where it is declared, its name and its type . A class cannot declare two
fields with the same name. The following instructions are included:

bcInstr ::= load i | store i | push n | pop | dup | add | sub | div
| iflt j | ifgt j | ifleq j | ifeq j | ifneq j | ifnull j | goto j
| new c | getfield f | putfield f
| newarray d | aload | astore | arraylength
| invokevirtual m | invokenonvirtual m | return

Similarly to Java bytecode, simple bytecode is a stack-based language. The
instructions in the first row manipulate the operand stack. The second row con-
tains jump instructions. Instructions in the third row manipulate objects and
their fields, while the fourth row works on arrays. The last row contains instruc-
tions dealing with method invocation. As regards notation, i is an integer which
corresponds to a local variable index, n is an integer or null, j is an integer
which corresponds to an index in the bytecode sequence, c ∈ C, m is a method
signature, and f is a field signature.

We assume an operational semantics which is a subset of the JVM specifica-
tion [37]. The execution environment of a bytecode program consists of a heap
h and a stack A of activation records. Each activation record contains a pro-
gram counter, a local operand stack, and local variables. The heap contains all
objects and arrays allocated during the execution of the program. Each method
invocation generates a new activation record according to its signature. Different
activation records do not share information, but may contain references to the
same objects in the heap.
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Example 1. (running example) Figure 1 depicts the bytecode and a possible Java
source (only shown for clarity of the presentation) of our running example. The
Java program implements the binary search of an element v in a sorted array t.
Variables l and u represent two indexes in the array t. If there exists a position
l≤m≤u such that t[m] is equal to v, then m is returned as result. Otherwise the
method returns −1. The table of local variables is indexed from 0 to 4 and it
contains the values of t, v, l, u and m respectively.

The first three instructions check the negation of the loop condition. If the
check succeeds, i.e., the loop condition does not hold, then the body of the loop
is not executed and the control goes to instruction 31, where the constant −1
is returned as the result (instruction 32) of the method. Otherwise the value of
(l+u)/2 is stored in m in instructions 3–8. Then, instructions 9–13 check whether
t[m]! =v holds. It the check fails, meaning that t[m]==v, then instruction 14 is
executed, where variable m is pushed on the stack and returned as result in
15. Otherwise, the execution jumps to line 16, where the second if is checked
(instructions 16, . . . , 20). If t[m]>v then instructions 21, . . . , 24 store the value
of m−1 in u and at instruction 25 the control goes back to the beginning of the
loop, i.e., instruction 0. Otherwise, the value of m+1 (instructions 26, . . . 30) is
assigned to l and, similarly, control returns to instruction 0. 2

3 Cost Analysis: from Bytecode to Cost Relations

This section describes how a bytecode program is analyzed in order to produce
a cost relation system (CRS) which describes its resource consumption. The
analysis consists of a number of steps: (1) the control flow graph of the program
is computed, and afterwards (2) the program is transformed into a rule-based
representation which facilitates the subsequent steps of the analysis without
losing information about the resource consumption; (3) size analysis and abstract
compilation are used to generate size relations which describe how the size of
data changes during program execution; (4) the chosen cost model is applied to
each instruction in order to obtain an expression which represents its cost; (5)
finally, a cost relation system is obtained by joining the information gathered in
the previous steps.

3.1 Control Flow Graph

The control flow graph of a program allows statically considering all possible
paths which might be taken at runtime, which is essential information for study-
ing its cost. Unlike structured languages such as Java, bytecode features un-
structured control flow, due to conditional and unconditional jumps. Reasoning
about unstructured programs is more complicated for both human-made and
automatic analysis. Moreover, the control flow is made even more difficult to
deal with by virtual method invocation and the need to handle exceptions. Each
node of a control flow graph contains a (maximal) sequence of non-branching
instructions, which are guaranteed to be executed sequentially. This amounts
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Fig. 2. The control flow graph of the running example

to saying that execution always starts at the beginning of the sequence, and
the instructions in the sequence are executed one after the other until the end,
without executing any other piece of code in the meanwhile.

The CFG can be built using standard techniques [2], suitably extended in
order to deal with virtual method invocation. For this, it is essential to perform
class analysis (see e.g. [51] and its references) which allows statically obtaining a
safe approximation of the set of classes to which an object variable may belong
to at runtime. Consider, for example, an object o, and suppose class analysis
determines that a set C contains all classes to which o may belong at a given
program point which contains a call of the form o.m(). Then, such call is trans-
lated into a set of calls o.mc, one for every class c ∈ C where m is defined. This
is obtained by adding new dispatch blocks, containing calls invoke(c.m) to each
implementation of m. Access to such blocks is guarded by mutually exclusive
conditions on the runtime class of o.

Figure 2 shows the CFG of the running example. The graph contains 7
nodes, each composed of non-branching instructions which are always executed
sequentially. All nodes end either in a return instruction (as in binSearch31 and
binSearch14 ), or in an instruction labeled with nop(), which indicates a condi-
tional or unconditional jump in the original bytecode. Edges corresponding to
conditional jumps are marked with a guard (which appears in brackets in the
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figure; for clarity, conditions in the original Java program are also shown with-
out brackets) representing the condition under which the edge can be traversed.
Guards which are true are omitted. Instructions wrapped in a nop() have been
replaced by edges in the CFG, but their place in the code is kept in order to take
into account their costs when generating the corresponding cost relation system,
as will be explained in Section 4 below.

3.2 Rule-based Representation

The rule-based representation (RBR) of a program is rich enough to preserve the
information about cost, while being simple enough to develop a precise cost anal-
ysis, since some advanced features are compiled away, and control flow has been
simplified. It is a structured procedural language with some relevant features:

1. recursion becomes the only iterative construct;
2. guarded rules are the only form of conditional construct;
3. there is only one kind of variables: local variables; and there is no operand

stack (instead, the k-th position in the stack becomes an additional local
variable sk, exploiting the fact that, in Java bytecode, the height of the
stack at each program point can be statically determined);

4. some object-oriented features are no longer present:

– objects can be basically regarded as records including an additional field
which contains their type;

– the behaviour due to dynamic dispatch is compiled into dispatch blocks;
– the language deals with the rest of object-oriented features by supporting

object creation, field manipulation and arrays;

5. methods are represented as collections of related blocks, and executing a
method is equivalent to executing the entry block of its representation.

These design choices help to make the generation of cost relation systems feasible,
and consistent with the program structure. The rule-based representation of
a program consists of a set of (global) procedures, one for each node in the
CFG. Each procedure consists of one or more rules. A rule for a procedure p
with k input arguments x̄ and a (single) output argument y takes the form
p(x̄, y) ← g, body where p(x̄, y) is the head, g is a guard expressing a boolean
condition, and body is (a suitable representation of) the instructions which are
contained in the node.

A guard can be either true, any linear condition about the value of variables
(e.g., x + y > 10), or a type check type(x, c). Every (non-branching) instruction
in the body is represented in a more readable (and closer to source code) syntax
than the original bytecode (Figure 3). E.g., the instruction load i which loads
the i-th local variable li into a new topmost stack variable st+1 is written as
st+1 := li (remember that variables named sk originate from the k-th position
in the stack but they are actually local variables in the RBR). Moreover, add
is translated to st−1 := st−1 + st, where t is the current height of the stack in
the original program, and putfield f is turned into st.f := st. As in the control
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bj comp(bj)

load i st+1 := li
store i li := st

push n st+1 := n
pop nop(pop)
dup st+1 := st

add st−1 := st−1 + st

sub st−1 := st−1 − st

lt st−1 < st

gt st−1 > st

eq st−1 = st

null st = null

¬ lt st−1 ≥ st

¬ gt st−1 ≤ st

bj comp(bj)

¬ eq st−1 6= st

¬ null st 6= null

type(n, c) type(st−n, c)
new c st+1 := new c
getfield f. st := st.f
putfield f. st−1.f := st

newarrayc st := newarray(c, st)
aload st−1 := st−1[st]
astore st−2[st−1] := st

arraylength st := arraylength(st)
invoke m m(st−n, . . . , st, st−n)
return out := st

nop(b) nop(b)

Fig. 3. Compiling bytecode instructions (as they appear in the CFG) to rule-
based instructions (t stands for the height of the stack before the instruction).

flow graph, branching instructions such as jumps and calls (which have become
edges in the CFG, but may still be relevant to the resource consumption) are
wrapped into a nop( ) construct, meaning that they are not executed in the
RBR, but will be taken into account in the following steps of the analysis. RBR
programs are restricted to strict determinism, i.e., the guards for all rules for
the same procedure are pairwise mutually exclusive, and the disjunction of all
such guards is always true.

A CFG can be translated into a rule-based program by building a rule for
every node of the graph, which executes its sequential bytecode, and calls the
rules corresponding to its successors in the CFG. Figure 4 shows the rule-based
program for the CFG of Figure 2. The RBR for the binSearch method has an
entry procedure which simply initializes all local variables and calls binSearch0.
In turn, the body of binSearch0 loads l and u (corresponding to l and u), and
calls its continuation binSearchc

0, that decides which block will be executed next,
depending on the comparison between s1 and s2 (note that the guards of the
continuation rules are mutually exclusive). Procedures which are not continu-
ations are named after the corresponding nodes in the CFG. Note that rules
binSearch26 and binSearch21 contain a call to binSearch0, which is in fact the
loop condition.

An operational semantics can be given for the rule-based representation,
which mimics the bytecode one. In particular, executing an RBR program still
needs a heap and a stack of activation records. The main difference between the
two semantics lies in the granularity of procedures: every method in the bytecode
program has been partitioned into a set of procedures. In spite of this, it can be
proven that any rule-based program is cost-equivalent to the bytecode program
it comes from. Intuitively, cost-equivalence means that no information about the
resource consumption is lost. The main cost-equivalence result states that the
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binSearch(t, v, l, u, r) ← init vars(m), binSearch0 (t, v, l, u, m, r)
binSearch0(t, v, l, u, m, r) ←

s1 := l, s2 := u, nop(if icmpgt 31), binSearchc
0(t, v, l, u, m, s1, s2, r).

binSearchc
0(t, v, l, u, m, s1, s2, r) ← s1>s2, binSearch31(t, v, l, u, m, r).

binSearchc
0(t, v, l, u, m, s1, s2, r) ← s1≤s2, binSearch3(t, v, l, u, m, r).

binSearch31(t, v, l, u, m, r) ← s1 := −1, r := s1.
binSearch3(t, v, l, u, m, r) ←

s1 := l, s2 := u, s1 := s1+s2, s2 := 2, s1 := s1/s2, m := s1, s1 := t, s2 := m,
s1 := s1[s2], s2 := v, nop(if icmpne 16), binSearchc

3(t, v, l, u, m, s1, s2, r).
binSearchc

3(t, v, l, u, m, s1, s2, r) ← s1=s2, binSearch14(t, v, l, u, m, r).
binSearchc

3(t, v, l, u, m, s1, s2, r) ← s1 6=s2, binSearch16(t, v, l, u, m, r).
binSearch14(t, v, l, u, m, r) ← s1 := m, r := s1.
binSearch16(t, v, l, u, m, r) ←

s1 := t, s2 := m, s1 := s1[s2], s2 := v,
nop(if icmple 26), binSearchc

16(t, v, l, u, m, s1, s2, r).
binSearchc

16(t, v, l, u, m, s1, s2, r) ← s1≤s2, binSearch26(t, v, l, u, m, r).
binSearchc

16(t, v, l, u, m, s1, s2, r) ← s1>s2, binSearch21(t, v, l, u, m, r).
binSearch26(t, v, l, u, m, r) ←

s1 := m, s2 := 1, s1 := s1+s2, v := s1, nop(goto 0), binSearch0(t, v, l, u, m, r).
binSearch21(t, v, l, u, m, r) ←

s1 := m, s2 := 1, s1 := s1−s2, u := s1, nop(goto 0), binSearch0(t, v, l, u, m, r).

Fig. 4. RBR of the example (guards which are true are omitted).

execution from cost-equivalent input configurations for a bytecode program and
its RBR leads to (1) non-termination in both cases; or (2) cost-equivalent output
configurations.

3.3 Cost Relations

Given a program P (without loss of generality, it is supposed here that P has
already been translated into its RBR form) and a cost model M, the classical
approach to cost analysis [57] consists in generating a set of recurrence relations
(RRs) which capture the cost (w.r.t. M) of running P on some input. As usual
in this area, data structures are replaced by their sizes in the recurrence rela-
tions. From rule-based programs it is possible to obtain cost relations (CRs), an
extended form of recurrence relations, which approximate the cost of running
the corresponding programs. In the presented approach, each rule in the RBR
program results in an equation in the CRS. Figure 5 shows the cost relation
system (i.e., a system of cost relations) for the running example, where it is easy
to see in the rule names the correspondence with the rule-based representation.
In these equations, variables are in fact constraint variables which correspond to
the sizes of those of the RBR. The right-hand side of an equation consists of an
expression e which gives the cost of executing the body of the rule, and, for sim-
plicity of the subsequent presentation, a linear constraint ϕ which denotes the
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(1) binSearch(t, v, l, u) = binSearch0(t, v, l, u, 0)
(2) binSearch0(t, v, l, u, m) = 3 + binSearchc

0(t, v, l, u, m, s1, s2) {s1=l, s2=u}
(3) binSearchc

0(t, v, l, u, m, s1, s2) = binSearch31(t, v, l, u, m) {s1>s2}
(4) binSearchc

0(t, v, l, u, m, s1, s2) = binSearch3(t, v, l, u, m) {s1≤s2}
(5) binSearch31(t, v, l, u, m) = 2
(6) binSearch3(t, v, l, u, m) = 11 + binSearchc

3(t, v, l, u, m′, s1, s2)
n

s2=v, m′ ∈
h

l+u
2 −1

2 , l+u
2

io

(7) binSearchc
3(t, v, l, u, m, s1, s2) = binSearch16(t, v, l, u, m)

(8) binSearchc
3(t, v, l, u, m, s1, s2) = binSearch14(t, v, l, u, m)

(9) binSearch16(t, v, l, u, m) = 5 + binSearchc
16(t, v, l, u, m, s1, s2) {s2=v}

(10) binSearch14(t, v, l, u, m) = 2
(11) binSearchc

16(t, v, l, u, m, s1, s2) = binSearch26(t, v, l, u, m)
(12) binSearchc

16(t, v, l, u, m, s1, s2) = binSearch21(t, v, l, u, m)
(13) binSearch26(t, v, l, u, m) = 5 + binSearch0(t, v, l′, u, m) {l′=m+1}
(14) binSearch21(t, v, l, u, m) = 5 + binSearch0(t, v, l, u′, m) {u′=m−1}

Fig. 5. CRS of the running example

effect of the body on the variables. An important point to note is that, there are
some cases where the simplification above may be incorrect. We opt by keeping
this simplification in the presentation, though not in the implementation, be-
cause problems are rare and otherwise the presentation gets more complicated.
In more detail, input-output size relations cannot always be merged together in
ϕ. Constraints which originate from input-output relations of procedures called
in the body of the rule cannot be taken into account until after the corresponding
calls. This is because, by merging them, we can no longer distinguish finite fail-
ures from infinite failures. For instance, this happens when we have a procedure,
say p, which never terminates. The input-output relation for p is represented
with the constraint false, indicating that there are no successful executions for
p. Any equation which has a call to p will have ϕ = false. If, by mistake, we take
this false as a finite failure, we would incorrectly discard (part of) this equation
as unreachable, when in reality execution never returns from this equation. In
our running example, this phenomenon does not happen since even after adding
constraints originating from input-output relations, no ϕ becames false.

Finally, note also that the output variable of the rule does not appear in the
equation, as explained below. The generation of a cost equation for a given RBR
rule goes through the following steps.

Size Measures. A size measure is chosen to represent and manipulate informa-
tion relevant to cost, and a variable is abstracted to its size w.r.t. such measure.
For example, (1) an array may be abstracted to its length, since this can typi-
cally give information about the cost of traversing it in a loop; or (2) an object
can be abstracted to the longest path reachable from it (in this case, the size
measure is well-known and is called path-length [52]) in order to describe the
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cost of traversing data structures such as trees or linked lists. The choice of a
size measure, in particular for heap structures, heavily depends on the program
to be analyzed, and is intended to represent the maximum amount of relevant
information. E.g., in cost and termination analysis, the measure used to abstract
a piece of data or a data structure should give information about the behavior
of a loop whose exit condition depends, as in the examples above, on the data.

Abstract Compilation. In the presented setting, one important issue is to
capture relations between the size of a variable at different program points. For
example, in analyzing x := x + 1, the interest usually lies in the relation “the
value of x after is equal to 1 plus the value of x before”.

In this steps of the cost analysis, instructions are replaced by linear con-
straints which approximate the relation between states (and, typically, between
different program points) w.r.t. the chosen size measure. For instance, s1 := o is
replaced by s1=o, meaning that, after the assignment, the size of s1 at the cur-
rent program point is equal to the size of o. As another example, x := new c can
be replaced, using the path-length measure, by x=1, meaning that the maximal
path reachable from x after the object creation has length 1.

Importantly, the use of path-length as a size measure for reference requires
extra information in order to obtain precise and sound results in the abstract
compilation of instructions involving references:

(a) sharing information [48] is required in order to know whether two references
may point to a common region of the heap; and

(b) non-cyclicity information [46] is required to guarantee that, at some specific
program point, a reference points to a non-cyclic data structure, i.e., that
the length of its longest path (therefore, the number of iteration on a typical
traversing loop) is guaranteed to be finite.

A slightly more complicated example where non-cyclicity information is used is
represented by a field access x := y.f : in this case

– no linear constraint can be inferred if f is a non-reference field;
– if y is detected as non-cyclic, then the size of x after the assignment can

be guaranteed to be strictly less than the size of y before (since the data
structure pointed by x is now a sub-structure of the one pointed by y);

– if y may be cyclic, then the size of x can only be taken to be not greater
than the size of y (thus basically forbidding to find useful results on x and
y in the following steps, as explained in Section 4).

The result of this abstract compilation is an abstract program which can be used
to approximate the values of variables w.r.t. the given size measure.

Input-Output Size Relations. As mathematical relations, CRs cannot have
output variables: instead, they should receive a set of input parameters and re-
turn a number which represents the cost of the associated computation. This

11



step of the analysis is meant to transform the abstract program in order to
remove output variables from it. The basic idea relies on computing abstract
input-output (size) relations in terms of linear constraints, and using them to
propagate the effect of calling a procedure. Concretely, input-output size rela-
tions of the form p(x̄, y) → ϕ are inferred, where ϕ is a constraint describing the
relation between the sizes of the input x̄ and the output y upon exit from p. This
information is needed since the output of one call may be input to another call.
Interestingly, input-output relations can be seen also as a denotational semantics
for the abstract programs previously obtained. Sound input-output size relations
can be obtained by taking abstract rules generated by abstract compilation, and
combine them via a fixpoint computation [13], using abstract interpretation tech-
niques [20] in order to avoid infinite computations.

Example 2. Consider the following RBR rules

incr(this, i, out) ← incr1(this, i, out)
incr1(this, i, out) ← s1 := i, s2 := 2, s1 := s1 + s2, out := s1

which basically come from the method

int incr(int i) { return i+2; }

All variables relevant to the computation are integers, so that abstract com-
pilation abstracts every variable into itself (due to the choice of the size mea-
sure for numeric variables), and the abstract program looks like (constraints
{s1 = 0, s2 = 0, out = 0} describe the initial values of variables)

incr(this, i, out) ← incr1(this, i, out)
incr1(this, i, out) ← {s1 = 0, s2 = 0, out = 0} |

s′1 = i, s′2 = 2, s′′1 = s′1 + s′2, out ′ = s′′1

By combining the constraints through the bodies, it can be inferred that the
output value of out is 2 plus the input value of i, which, in the end, is represented
by the input-output size relation

incr(this, i, out) ← {out = i + 2}

2

Cost Models. Resource usage analysis is a clear example of a program analysis
where the focus is not only on the input-output behavior (i.e., what a program
computes), but also on the history of the computation (i.e., how the computation
is performed). Since the history of a computation can be normally extracted by
its trace, it is natural to describe resource usage in terms of execution traces.

The notion of a cost model for bytecode programs formally describes how
the resource consumption of a program can be calculated, given a resource of
interest. It basically defines how to measure the resource consumption, i.e., the
cost, associated to each execution step and, by extension, to an entire trace.
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In the present setting, a cost model can be viewed as a function from a
bytecode instruction, and dynamic information (local variables, stack, and heap)
to a real number. Such number is the amount of resources which is consumed
when executing the current step in the given configuration. Example 3 below
introduces some interesting cost models which will be used in the next sections.

Example 3. The instructions cost model, denoted Minst , counts the number of
bytecode instructions executed by giving a constant cost 1 to the execution of
any instruction in any configuration: it basically measures the length of a trace.

The heap cost model, Mheap , is used for estimating the amount of memory al-
located by the program for dynamically storing objects and arrays (i.e., its heap
consumption): it assigns to any instruction the amount of memory which it allo-
cates in the current configuration. For instance, newarray int (resp., newarray c)
allocates v ∗ size(int) (resp., v ∗ size(ref )) bytes in the heap, where v denotes
the length of the array (currently stored on the top of the stack), and size(int)
(resp., size(ref )) is the size of an integer (resp., a reference) as a memory area.
2

Generation of Cost Relation Systems. Cost relation in a CRS are generated
by using the abstract rules to build the constraints, and the original rule together
with the selected cost model to generate cost expressions representing the cost of
the bytecodes w.r.t. the model. Consider the cost relations identified by equations
(6), (7) and (8) in the CRS of the running example (Figure 5), reproduced here
for more clarity.

(6) binSearch3(t, v, l, u,m) = 11 + binSearchc

3(t, v, l, u,m′, s1, s2)
{

s2=v,m′ ∈
[

l+u
2 −1

2 , l+u
2

]}

(7) binSearchc

3(t, v, l, u,m, s1, s2) = binSearch16(t, v, l, u,m)
(8) binSearchc

3(t, v, l, u,m, s1, s2) = binSearch14(t, v, l, u,m)

This excerpt shows that the inferred cost of executing binSearch3 amounts to 11
plus the cost of executing binSearchc

3. In turn, the cost of binSearchc

3 can be either
the cost of binSearch16 or the cost of binSearch14. In this case, cost expressions
(as 11 in (6), or 0, left implicit in (7) and (8)) are simply constant values, which
correspond to the number of executed instructions, since the cost model Minst

has been chosen. That is, eleven instruction are executed in binSearch3 before
calling binSearchc

3, while no instructions are executed before calling binSearch16

or binSearch14 from binSearchc

3. The constraints which appear at the end of
some equations (as in (6); see also the complete CR for more examples) will
be used in the following section. CRs extend recurrence relations in the sense
that they allow to handle advanced features such as non-determinism (see for
instance equations (7) and (8)) constraints, and multiple arguments, which arise
in the cost analysis of realistic programs.
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4 From Cost Relations to Closed-Form Upper Bounds

Though cost relations (CRs) are simpler than the programs they originate from,
since all variables have integer type, in several respects they are not as static
as one would expect from the result of a static analysis. First, cost relations
are recursive, so that one may need to iterate for computing their value on a
concrete input. Second, even for deterministic programs, it is well known that the
loss of precision introduced by the size abstraction may result in cost relations
which are non-deterministic. This happens in the above example in the loop
inside binarySearch: since the array t is abstracted to its length, the contents of
the array are lost in the abstraction. In particular, the value of t[m] is unknown
in the CR. Hence, the pairs of Equations 7–8 and 11–12 end up having the
same guards and the evaluation of this CR turns out to be non-deterministic.
In order to find the worst-case cost, one would need to compute and compare
many results. In some cases, the number of results may even be infinite. For both
reasons, it is clear that it is interesting to compute closed-form upper bounds
for the cost relation, whenever this is possible, i.e., upper bounds which are in
non-recursive form. For example, the goal is to infer that the cost of calling
binSearch(t, v, l, u) is 24 ∗ ⌈log2(nat(u− l) + 1)⌉+ 40, where nat(a) = max(a, 0).

Since CRs are syntactically quite close to Recurrence Relations (RRs for
short), in most resource analysis frameworks, it has been assumed that cost
relations can be easily converted into RRs. This has led to the belief that it is
possible to use existing Computer Algebra Systems (CAS for short) for finding
closed forms of the relations generated by resource analysis. As it will be shown,
cost relations are far from RRs , and using CAS to obtain closed-form upper
bounds is, in general, not practical, and requires a considerable amount of human
intervention in many phases.

The main idea in the approach used in the COSTA system is to view CRSs as
programs, and then use semantic-based static-analysis and program-transformations
techniques in order to infer closed-form upper bounds [8]. We first explain the
basic ideas on small examples, then we explain how they can be extended to the
general case.

4.1 Bounds on the Number of Applications of Equations

The first dimension of the problem of obtaining closed-form upper bounds is to
bound the number of recursive calls in each relation, which directly affects the
number of times an equation can be applied. Consider, for example, the following
cost relation:

C(n) = 3 {n ≤ 0}
C(n) = 9 +C(n′) {n > 0, n′ < n}

An evaluation of an initial call C(v), where v is an integer value works as follows:
if v ≤ 0 then we apply the first equation and we accumulate 3 units to the cost,
and if v > 0 then we apply the second equation, which in turn accumulates 9
units to the cost plus the cost of the recursive call C(v′) where v′ is an integer
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number such that v′ < v (which corresponds to the constraint n′ < n). Clearly,
if Ir and Ib are, respectively, upper bounds on the number of applications of the
recursive and base-case equations, then 9 ∗ Ir + 3 ∗ Ib is an upper bound on the
corresponding cost. In the above example, in each recursive call the argument
of C decreases at least by 1 (since n′ < n), and therefore the maximum number
of applications of the second equation is Ir = n0, where n0 corresponds to the
(initial) input value, and Ib = 1, since the base-case equation is applied only once.
Note that when n0 is negative, we do not make any recursive call, therefore in
order to capture these cases we define Ir = nat(n0) where nat(a) = max(a, 0).
Putting everything together we obtain that an upper bound for the call C(n0)
is 9 ∗ nat(n0) + 3.

The above example demonstrates that inferring how the values of arguments
change during evaluation plays an important role in bounding the number of
application of each equation. This change might come in different forms, for
example if we change the second equation in the above CR to

C(n) = 8 +C(n′) {n > 0, n′ ≤ n

2 }

then C’s argument decreases by at least half in each recursive call, and there-
fore the maximum number of application of the recursive equation is Ir =
⌈log2(nat(n0) + 1)⌉ which in turn implies that the upper bound would be 8 ∗
⌈log2(nat(n0) + 1)⌉ + 3.

Another important factor that affects the number of applications of the differ-
ent equations is the number of recursive calls in a single equation. For example,
assuming that the recursive equation in the above CR is of the form

C(n) = 7 +C(n′) + C(n′′) {n > 0, n′ < n, n′′ < n}

then the recursive equation would be applied in the worst-case Ir = 2nat(n0) − 1
times, because each call generates 2 recursive calls, and in each call the argument
decreases at least by 1. Note that 2nat(n0) − 1 corresponds to the number of
internal nodes which a complete binary tree of height nat(n0) has. In addition,
unlike the above examples, the base-case equation would be applied in the worst-
case Ib = 2nat(n0) times, and therefore the upper bound would be 7 ∗ (2nat(n0) −
1) + 3 ∗ 2nat(n0).

In general, a CR does not include only two equations as above. It may include
several base cases and/or several recursive equations. In addition, equations are
not necessarily mutually exclusive, which means that at each evaluation step
there are several equations that can be applied. For example, if all three recursive
equations that we have seen above are defined in the same CR, then the upper
bound would be max([7, 8, 9]) ∗ (2nat(n0) − 1) + 3 ∗ 2nat(n0). Note that the worst-
case for the cost of each application is determined by the first equation, which
contributes the largest cost, i.e., 9. The worst case for the number of applications
of the recursive case is determined by the third equation, which has two recursive
calls.

As we explained at the beginning, the problem of bounding the number of
applications of each equation is related to bounding the number of consecutive
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recursive calls, which has been extensively studied in the context of termination
analysis. Automatic termination analyzers usually prove that an upper bound
of the consecutive recursive calls exists by proving that there exists a function f
from the loop’s arguments to a well-founded partial order, such that f decreases
in any two consecutive calls. This, in turn, guarantees the absence of infinite
traces, and therefore termination. These functions are usually called ranking
functions. If instead of proving that such function exists we actually compute
one, then we can use it as the upper bound on the number of consecutive calls,
which in turn can be used to bound the number of applications.

4.2 Bounds on the Cost of Equations

In the above examples, in each application the corresponding equation con-
tributes a constant number of cost units. This is not the case in general. For
example, it is common to have a CR of the following form:

C(n) = 3 {n ≤ 0}
C(n) = nat(n + 2)2 +C(n′) {n > 0, n′ ≤ n

2 }

where in the second equation we accumulate a non-constant, i.e., nat(n + 2)2,
number of units in each application. In equations with a non-constant direct cost
expression, a closed-form upper bound can be obtained by considering the worst-
case (the maximum) value that the expression can be evaluated to, multiplied by
the number of applications of the corresponding equation. For example, in the
above equation, the maximum value that the expression (n+2) can be evaluated
to is (n0 + 2), and therefore we would produce the upper bound nat(n0 + 2)2 ∗
⌈log2(nat(n0) + 1)⌉ + 3.

In order to infer the maximum value of non-constant expressions automati-
cally, we first infer invariants (linear relations) between the equation’s variables
and the values which such variables had at the initial call, and then maximize
the expression w.r.t. these values. For the above example we would infer the re-
lation {n0 ≥ n > 0}, from which we can see that the maximum value for n is n0.
This in turn implies that (n0 +2) is the maximum value of (n+2) and therefore
nat(n0 + 2)2 is the maximum value for nat(n + 2)2. Again, if several recursive
equations are involved, we should combine them all using the max operator on
the corresponding expressions, as we have done above.

4.3 The General Case

In all the above examples, a single relation was involved and all recursions were
direct. We refer to such CRs as stand-alone CRs. This is not the case in general.
Instead, in most cases, CRSs consist of several CRs with complex call graphs. In
order to cope with this, we first transform the given CRS into a structured form
with only direct recursions, and incrementally apply the above techniques. We
do so by first applying Partial Evaluation [32], a well-known program transfor-
mation technique, to each of the strongly connected components (SCC) in the
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corresponding call graph. By applying partial evaluation starting from a cover
point of the SCC, it is guaranteed that get rid of mutual recursion. After partial
evaluation, there must be at least one stand-alone CR (does not call any other
CR), therefore we can apply the techniques described above in order to solve all
these stand-alone CRs. Substituting the results in their calling contexts results
in more stand-alone CRs that can in turn be solved using the above techniques
again. This process is repeated until there are no more CRs left.

4.4 Obtaining an Upper Bound for the Running Example

The CRS for the running example, shown in Figure 5, contains multiple relations
and includes non-direct recursion, which avoids obtaining a closed-form upper
bound in a compositional way. As explained above, the first step is to transform
the CRS into an equivalent one where we have only direct recursion. The CRS
depicted in Figure 5 has 2 SCCs: the first SCC only has Equation 1, and it is
not recursive; the second SCC contains Equations 2–14 and corresponds to the
loop in binSearch and is therefore recursive. After applying partial evaluation to
the recursive SCC we obtain the following transformed CRS:

(1) binSearch(t, v, l, u) = loop(t, v, l, u, 0)
(2) loopb(t, v, l, u, m) = 5 {l>u}
(3) loopb(t, v, l, u, m) = 16 {l≤u}
(4) loopb(t, v, l, u, m) = 24 + loopb(t, v, l′, u, m′)

{l≤u, m′ ∈ [ l+u
2 −1

2 , l+u
2 ], l′=m′+1}

(5) loopb(t, v, l, u, m) = 24 + loop(t, v, l, u′, m′)

{l≤u, m′ ∈ [ l+u
2 −1

2 , l+u
2 ], u′=m′−1}

The recursive SCC has been transformed into Equations 2–5 above. Note that
Equations 3–5 have the same guard (l≤u), which results in a non-deterministic
CR. The reason for this is that Equation 3 corresponds to the case where t[m] ==
v, Equation 4 to the case where t[m] > v and Equation 5 to the case where
t[m] < v. However, the value of t[m] is not observable at the cost relation level
and even though the original program is deterministic, its associated CRS is not.

Solving the above CRS starts by solving the stand-alone CR which consists
in Equations 2–5. Note that Equations 2–3 are the base-cases and 4–5 are the re-
cursive ones. Examining the recursive equations and their attached constraints,
we can automatically infer that the difference between the values of u and l de-
creases logarithmically at each recursive call and, in particular, we can provide
Ir = ⌈log2(nat(u0 − l0) + 1)⌉ + 1 as an upper bound for the number of applica-
tions of the recursive equation. The base-case equations are applied only once.
Therefore the closed-form upper bound is:

loopb(t0, v0, l0, u0,m0) = 24 ∗ (⌈log2(nat(u0 − l0) + 1)⌉ + 1) + 16

This closed form can then be substituted in Equation 1 and after some simplifi-
cation we obtain the following closed-form upper bound for binSearch:

binSearch(t0, v0, l0, u0) = 24 ∗ ⌈log2(nat(u0 − l0) + 1)⌉ + 40
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In order to illustrate the use of invariants and the maximization of cost expres-
sions, let us now assume that the method binSearch is used in another method
as follows:

public static int m(int[ ] t){
int c=0;
int u=t.length;
for (int i=0; i<u;i++)

if (binarySearch(t,i,i,u) != -1 ) c++;
return c;

}

and that we are interested in inferring closed-form upper bounds for m. We first
build the CRS that corresponds to m. For brevity, we show the CRS after partial
evaluation:

(1) m(t) = 9 + loopm(t, c, u, i) {i=0, u=t, c=0}
(2) loopm(t, c, u, i) = 3 {i≥u}
(3) loopm(t, c, u, i) = 12+binSearch(t, i, i, u)+loopm(t, c, u, i′) {i<u, i′=i+1}
(4) loopm(t, c, u, i) = 13+binSearch(t, i, i, u)+loopm(t, c′, u, i′) {i<u, i′=i+1, c′=c+1}

First we solve the CR loopm (Equations 2–4). We start by substituting the close-
form upper bound of binSearchm in the corresponding calls and we obtain the
following stand-alone CR

loopm(t, c, u, i) = 3 {i≥u}
loopm(t, c, u, i) = 24 ∗ ⌈log2(nat(u − i) + 1)⌉ + 52+loopm(t, c, u, i′) {i<u, i′=i+1}
loopm(t, c, u, i) = 24 ∗ ⌈log2(nat(u − i) + 1)⌉ + 53+loopm(t, c′, u, i′) {i<u, i′=i+1, c′=c+1}

Examining the recursive equations and their attached constraints we automati-
cally infer that the maximum number of applications of the recursive equations
is nat(u0−i0), since i increases by one until it reaches u (which does not change).
Now, in order to infer the closed-form upper bound we need to approximate the
maximum values that log2(nat(u − i) + 1) can be evaluated to. This happens
when u− i is maximal. This occurs for the maximal values of u and the minimal
values of i. Since the invariant that we infer includes i ≥ i0 and u ≤ u0, we can
conclude that u0 − i0 is the maximum value to which u − i can be evaluated.
Therefore the closed-form upper bound for loopm is:

loopm(t0, c0, u0, i0) = nat(u0 − i0) ∗ (24 ∗ ⌈log2(nat(u0 − i0) + 1)⌉ + 53) + 3

Substituting this upper bound in the first equation results in a non-recursive CR
which consists in a single equation:

m(t) = 9 + nat(u − i) ∗ (24 ∗ ⌈log2(nat(u − i) + 1)⌉ + 53) + 3 {i=0, u=t, c=0}

and since in this context we have i = 0 and u = t, we can conclude with the
following closed-form upper bound for m:

m(t) = 24 ∗ nat(t) ∗ ⌈log2(nat(t) + 1)⌉ + 53 ∗ nat(t) + 12 )
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5 Application to Resource Certification

In order to motivate the interest of resource usage certification or (resource cer-
tification for short), we will start by describing mobile code. Nowadays, the use
of mobile code is widespread. It includes, for example running applets and/or
plug-ins downloaded from the net in a web browser or a mobile phone. The cur-
rent approach to security of mobile code is a combination of static verification
of certain properties, which guarantees a certain level of security, with dynamic
checking, which supervises all operations which are still potentially unsecure af-
ter the static verification. For example, in the Java Virtual Machine, mobile code
is subject to bytecode verification before being executed, while operations such
as array indexing are checked at runtime. Bytecode verification, if successful,
provides a number of guarantees on the program, such as being well typed, with
jumps to existing instructions, etc. Note that if the bytecode verification process
fails, the program is discarded.

Ideally, one would like to extend this model in order to include more so-
phisticated security policies in the static verification part. In particular, and as
already sketched in Section 1, the purpose of resource certification is to consider
resource usage bounds as security policies. This means that prior to executing
a program, it must be guaranteed that the program satisfies a given resource
usage policy. This problem can be formulated in two ways. One is to have an
automatic system which given a program and a resource usage policy answers
yes only if it succeeds to prove that the program satisfies the policy. Alterna-
tively, we can split this process in two steps: first, an automatic system obtains
an upper bound on the resource usage of the program and second, another auto-
matic system, which in what follows we refer to as comparator, checks whether
the computed upper bound is smaller than or equal to the resource usage policy
for any possible input value. We advocate for the second alternative because we
believe it is more flexible: we first use COSTA on the code producer side to infer
upper bounds which are independent of any resource policy and consumer, and
then, on the code consumer side we check whether the upper bound abides by
the policy.

5.1 An Example of Resource Certification

We illustrate through a simple example the fundamental intuition behind re-
source certification. Let us assume a resource usage policy for method m in Fig-
ure 1 that imposes a resource usage policy, which we call policy , on the number
of instructions executed of:

policy=60 ∗ [nat(t)]2 + 120 ∗ nat(t) + 13

COSTA infers the upper bound ub=24∗nat(t)∗⌈log2(nat(t)+1)⌉+53∗nat(t)+12.
The code will be acceptable, provided that policy is guaranteed, i.e., ub≤policy ,
which happens to be the case in our example and that the comparator succeeds
to prove it.
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Developing a comparator which handles closed-forms that involve logarith-
mic, exponential, polynomial expressions, etc. is far from trivial. Based on the
ideas in [26], we are currently implementing in COSTA the basics of such com-
parator, but it is still subject of ongoing work.

Also, though in some contexts, especially when considering memory usage,
non-asymptotic policies are to be expected, sometimes it is more reasonable that
the policy is asymptotic. In COSTA, policies are currently non-asymptotic and
handling of asymptotic policies is also subject of ongoing work. Coming back to
our previous example, this would result in a new policy ′ s.t. policy ′=[nat(t)]2. The
comparator should again be able to prove that policy ′ is satisfied by method m.

5.2 Scenarios for Resource Certification

Within the alternative we propose, in which code certification is performed in
two steps, there are several scenarios one could imagine. We now describe three
different ones.

The Consumer-based Scenario In this first scenario, it is the sole respon-
sibility of the mobile code consumer to both obtain an upper bound and to
compare such upper bound with the policy. This scenario is simple, since it does
not involve any further actor, but it is inefficient, since the mobile code has to
be certified separately for every consumer. Also, it may be unfeasible on devices
with limited computing power, such as mobile phones.

The Server-based Scenario In this second scenario, there is an additional
actor which acts as the server of the mobile code. Such server not only dis-
tributes the mobile code. It also computes once and for all an upper bound for
it. Assuming that this server is trusted by the code consumer, the consumer
downloads a bundle which contains both the code and its upper bound. In order
to guarantee that the bundle is actually produced by the trusted server, the bun-
dle is signed using standard Public Key Infrastructure (PKI) techniques. Then,
the code consumer, using the public key of the server, checks that the bundle
is correct and uses the provided upper bound. Similarly, the comparison phase
could also either be outsourced to trusted servers and be accessed using PKI or
be performed locally.

The PCC-based Scenario In this final scenario, the situation is somewhat
intermediate between the two other extremes. The main advantage of the pcc-
based scenario w.r.t. the server-based one is that in the pcc-scenario the server
does not need to be trusted by the code consumer. Unlike the simpler notion
of PKI (which merely guarantees that the code has been produced or approved
by the signing entity, such as a program, person, or organization), now the pcc
server provides an unsigned bundle which contains the code, an upper bound,
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and some verifiable evidence3 about the upper bound being correct. Then, the
code consumer has to have an automatic (and efficient) system for verifying that
the provided upper bound is actually valid for the code, by using the provided
evidence.

As it is well know from the proof-carrying code [41] theory, the main advan-
tage of this scenario is that the evidence only needs to be generated once and
the verification process which occurs at the consumer side should be much more
efficient than computing the upper bounds from scratch. Essentially, the hard
work is shifted from the code consumer to the code producer (i.e., the program-
mer and/or the compiler), which now has to not only produce the code, but also
an upper bound and the verifiable evidence which must be bundled with it.

In the case of COSTA, a PCC-based scenario can obtained by using ideas
from Abstraction-Carrying Code [7] (ACC), which proposes to use abstract in-
terpretation as enabling technology for PCC. The main idea in ACC is to use,
at the producer’s side, a fixed point-based static analyzer, in order to automat-
ically infer an abstract model (or simply abstraction) of the mobile code which
can then be used to prove that this code is secure w.r.t. the given policy in a
straightforward way. A simple, easy-to-trust (analysis) verifier at the consumer’s
side could verify the validity of the information on the mobile code. This veri-
fier could be indeed a specialized abstract interpreter whose key characteristic
is that it does not need to iterate in order to reach a fixed point (in contrast
to standard analyzers). Furthermore, as the process of inferring the abstraction
is fully automatic, the analyzer itself could be used at the consumer side, as
discussed in the consumer-based scenario above.

We are currently working on building a PCC infrastructure for COSTA by
following the principles of ACC. Since the analyzer computes several abstrac-
tions of the program (size relations, invariants, ranking functions, etc.) in order
to be able to compute an upper bound, the evidence should in principle contain
the fixed points of multiple analyses. However, depending on the analysis times
and the amount of space required to store its result, for some analyses it may
be more efficient to recompute things on the consumer side than to verify the
evidence provided by the server. Thus, there are still important practical deci-
sions regarding which analyses results to include in the evidence and which to
recompute on the consumer.

In our opinion, regardless of which of the three scenarios are put into practice,
generalized use of resource certification will not be a reality until there are fully
automatic resource analyzers available which are capable of computing accurate
upper bounds for real-life applications. This is the requirement which COSTA
aims at solving. Once this is sufficiently solved, the rest of the infrastructure will
be in place relatively easily.

3 In the original PCC framework, this evidence was called certificate. We prefer avoid-
ing the use of such terminology since it is already rather overloaded.
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6 Related Work

In this section, we review related work by focusing first in existing tools developed
for the analysis and transformation of Java bytecode in Section 6.1. Then, in
Section 6.2, we give a brief overview of the features that resource analyses have
on the different programming paradigms and the most interesting aspects of each
of them. Later, in Section 6.3, we compare our system for obtaining closed-form
upper bounds with existing solvers. Finally, in Section 6.5, we summarize the
work on certification of the resource consumption of programs.

6.1 Tools for Analysis of Java Bytecode

Analysis of Java bytecode is currently an active research area with a number of
analysis and transformation tools available. Especially relevant are the analyses
developed on the Soot framework [54] and the Julia generic analyzer [50]. Soot
is a framework for the development of optimizations and analyses for Java byte-
code which already includes points-to, purity, and dynamic data structure anal-
yses, among others. The most similar part between these systems and COSTA
is the transformation of the bytecode into an intermediate (procedural) repre-
sentation. Indeed, intermediate representations are common practice to develop
analysis and transformations on JBC. Of relevant importance is BoogiePL [36]
as well. The main differences with our RBR are: (1) they do not provide a uni-
form treatment of all kinds of loops by means of recursion, (2) they do not
perform the loop extraction transformation we propose, which is important for
compositionality in resource analysis; and (3) the intermediate representation
called Shimple in Soot performs SSA, but neither Shimple nor BoogiePL con-
vert stack variables into local variables as COSTA does. In our representation,
in one pass, we can eliminate almost all variables which originate from stack
variables, which results in a more efficient subsequent size analysis. The Julia
Java bytecode analyzer [50] provides a generic analysis engine for which sharing,
class, non-nullness, information flow, escape, constancy, and static initialisation
analyses have been integrated. Neither Julia nor Soot include a resource analysis,
though Julia also contains implementations of some of the pieces (in particular
the class, nullity, sharing, and cyclicity analyses) which are required in the size
analysis component.

6.2 Resource Analysis for Different Programming Paradigms

Focusing on resource analysis, important effort has been devoted to extend Weg-
breit’s framework [57] to different languages and programming paradigms. The
main objective in this task is to define a resource analysis framework in which it
is possible to generate CRS from the programs in the corresponding language.
As mentioned in Section 1, most of the extensions to Wegbreit’s framework have
taken place in the context of high-level declarative languages, whose recursive
structure simplifies the process of generating cost relations. In general, these
analyses consider languages without a mutable heap, and they do not deal with
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objects and exceptions as in our case. We are not aware of any work, apart from
ours, that applies Wegbreit’s framework to imperative languages. Below we re-
view several frameworks defined for the corresponding declarative programming
paradigms.

Cost Analysis in Functional Programming. Early work on resource analysis
[57,35,44] was developed for a first order subset of Lisp. Rosendahl [44] presented
a system based on transforming a program into a step-counting version which
was then analyzed by relying on abstract interpretation. The result of such anal-
ysis was expressed as a CRS which was then attempted to be transformed into a
closed form by relying on a series of source-to-source transformations. Theoreti-
cal advances for analyzing lazy functional languages were made by [56] and [15].
They used projections and demand analysis to model a call-by-need reduction
strategy of typed lambda calculus. Still in the context of functional languages,
the technique of cost counting programs mentioned above [44,35] was extended
in [47] to higher-order programs. Recent work [33] describes a complexity analy-
sis for programs extracted from proofs carried out with the Coq proof assistant.
The generated CRSs are solved in this case by relying on MAPLE. Again, the
first transformational part is not required and size analysis does not have to deal
with object-oriented features. An automatic complexity analysis for computing
upper bounds on the time complexity of higher-order Nuprl programs is pre-
sented in [14]. The analysis derives recursive cost equations which are passed to
Mathematica. In general, in functional programming, resource analysis focuses
on dealing with higher-order functions and lazy evaluation.

Cost Analysis in Logic Programming. One of the first resource analysis frame-
works [22] was developed in the context of logic programming. In this setting,
resource analysis needs to consider peculiar features of logic languages, such as
approximating the number of solutions (due to non-deterministic computations),
type and mode inference, and non-failure information. The CASLOG system [22]
was designed to solve CRSs for logic program and it is currently used in the
CiaoPP system [28]. As in functional programming, obtaining CRSs is simplified
by the fact that they already start from a recursive programming language where
recursion is the only form of iteration. Also, size analysis in logic programming
differs from ours as it does not support object-oriented features. The resource
analysis integrated in the CiaoPP system includes a resource analysis [40] based
on a size analysis for logic programs and hence differs fundamentally from ours.

6.3 Systems for Computing Closed-Form Upper-Bounds

There are two main ways of viewing CRSs which lead to different mechanisms
for finding closed-form upper-bounds. We call the first view algebraic and the
second view transformational. The algebraic one is based on regarding CRSs as
recurrence relations. This view was the first one to be proposed and it is the
one which is advocated for in a larger number of works. It allows reusing the
large existing body of work in solving recurrence relations. Within this view,
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two alternatives have been used in previous analyzers. One alternative consists
in implementing restricted recurrence solvers based on standard mathematical
techniques within the analyzer, as done in e.g. [57,22]. The other alternative,
motivated by the availability of powerful computer algebra systems (CASs for
short) such as Mathematica, MAXIMA, MAPLE, etc., consists in connecting the
analyzer with an external solver, as proposed in [56,47,14,6,38].

The transformational view consists in regarding CRSs as (functional) pro-
grams. In this view, closed-form upper-bounds are produced by applying (general-
purpose) program transformation techniques on the CRS [44] until a non-recursive
program is obtained. The transformational view was first proposed in the ACE
system [35], which contained a large number of program transformation rules
aimed at obtaining non-recursive representations. It was also used by Rosendahl
in [44], who later in [45] provided a series of program transformation techniques
based on super-compilation [53] which were able to obtain closed-forms for some
classes of programs.

The need for improved mechanisms for automatically obtaining closed-form
upper-bounds was already pointed out in Hickey and Cohen [29]. A significant
work in this direction is PURRS [10], which has been the first system to provide,
in a fully automatic way, non-asymptotic closed-form upper and lower bounds
for a wide class of recurrences. Unfortunately, and unlike our proposal, it also re-
quires CRSs to be deterministic. The problem with all the approaches mentioned
above is that, though they can be successfully applied for obtaining closed-forms
for CRSs generated from simple programs, they do not fulfill the initial expec-
tations in that they are not of general applicability to CRSs generated from real
programs.

The main motivation for developing the solver [8] that we use in COSTA
was our own experience in trying to apply the algebraic approach on the CRSs
generated by [6]. We argue that automatically converting CRSs into the format
accepted by CASs is unfeasible. Furthermore, even in those cases where CASs
can be used, the solutions obtained are so complicated that they become useless
for most practical purposes. In contrast, our approach can produce correct and
comparatively simple results even in the presence of non-determinism.

6.4 Other Approaches to Cost Analysis

In the imperative programming paradigm, most of the work has been done by
the real-time and embedded systems community. It has mainly focused on real-
time aspects, with major inroads made in WCET analysis, see e.g. [23], which
is technically different from our resource analysis, the main similarity being the
need to infer upper bounds on the number of iterations of loops.

There exist other approaches to resource analysis which are not based on
Wegbreit’s framework. These include analyses based on type-and-effect sys-
tems [11,49,55]. Type-and-effect systems [42] are a well-known technique for
automatic program analysis. They main difference w.r.t. abstract interpretation
approaches like ours is that they avoid having the implementation of specialised
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inference engines that may be required by abstract interpretation and they sim-
plify the construction of the soundness proofs through analogy with similar and
well-understood proofs for the underlying type system. The latest work by [49]
uses a type-and-effect system based on Hindley-Milner types to expose con-
straints on sized types [31] for higher order, recursive functional programs, to
provide improved quality of resource analysis. Apart from the underlying dif-
ferences between the considered languages, in contrast to our proposal, this
approach to resource analysis is restricted to linear upper bounds. Besides, the
language does not support recursion and the analysis is restricted to a cost
model that counts the number of steps. The analysis presented in [11] proposes
an extension of the λ-calculus to ensure that resources are correctly used. They
also rely on a type-and-effect system to over approximate the set of histories of
events (i.e., the usage of resources) that a program can generate at runtime. A
model-checking technique then validates such approximations. In essence, this
work is focused on the enforcement of resource usage policies, but their tech-
niques cannot be used to generate upper bounds on the resource usage as our
method does.

There is also work which studies the relationship between syntactical con-
structions of programming languages and their computational complexity [34,12].
These analyses are developed on simple imperative languages which are far from
our bytecode and, in contrast to our work, they cannot be used to compute
non-asymptotic upper bounds.

The work in [39] shows how to apply sub-interpretation (firstly used in first
order functional programming to deal with computational complexity) to object-
oriented programs without recursion in order to provide upper bounds on their
stack usage. This approach is restricted to polynomial bounds and to the par-
ticular resource of stack usage.

More recent work develops resource analyses to estimate the memory con-
sumption. In particular, [16] describes a technique for Java-like languages which
computes symbolic polynomial approximations of the amount of memory re-
quired by a program. The work by [19] studies the memory consumption (in-
cluding both heap space and stack usage) of low-level programs which are simi-
lar to our bytecode programs. In both cases, the analyses are less general than
ours, both in the kind of properties they can estimate (specific to memory con-
sumption) and in the kind of upper bounds that they can generate (polynomial
bounds).

The SPEED system [25,24] is able to automatically compute symbolic com-
plexity bounds of procedures written in C/C++. The basic idea of their method-
ology is to instrument monitor variables to count the number of loop iterations
and then statically compute an upper bound on these counter variables in terms
of programming inputs using invariant generation tools. They allow the user the
possibility of defining some quantitative functions over abstract data-structures
to avoid the need of shape analysis. Besides, SPEED performs some program
transformations to improve the precision of the analysis when inferring bounds
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on certain types of loops. Some of these ideas could be applied in order to im-
prove our framework.

6.5 Resource Usage Certification

As already mentioned in Section 5, resource usage certification [21,9,30,18,43]
proposes the use of security properties involving resource requirements, i.e., that
the untrusted code adheres to specific bounds on resource consumption. Related
work in the context of Java bytecode includes the work in the MRG project [9],
which can be considered complementary to ours. MRG focuses on building a
proof-carrying code [41] architecture for ensuring that bytecode programs are
free from run-time violations of resource bounds. The cost model which has
been used to develop the analysis is heap consumption, since applications to be
deployed on devices with a limited amount of memory, such as smartcards, should
be rejected if they require more memory than that available. The framework is
restricted to polynomial bounds and to the above cost model, while our resource
analysis can infer a wider set of bounds (including exponential, algorithmic,
etc.) and it is parametric with respect to the cost model. More related work is
the one proposed by [17], where a resource usage analysis is presented. Again,
this work focuses on one particular notion of cost, memory consumption, and it
aims at verifying that the program executes in bounded memory by making sure
that the program does not create new objects inside loops, but it does not infer
resource usage bounds. The analysis has been certified by proving its correctness
using the Coq proof assistant. Compared to previous work, our system shows,
for the first time, that it is possible to automatically generate resource bounds
guarantees, not restricted to polynomial bounds, for a realistic mobile language.

7 Conclusions and Future Perspectives

In this paper we have illustrated, by means of examples, how the COSTA system
performs resource analysis. The analysis is done in two steps. First, cost relation
systems are generated for an input bytecode w.r.t. a cost model. Such relations
provide useful approximations of the resource usage of the program w.r.t. the
considered cost model, in terms of the size of the input arguments, and provided
an accurate size analysis is used to establish relationships between arguments.
Second, closed-form upper bounds for the cost relation systems are obtained. This
is possible provided that ranking functions are found for all loops which affect
the cost and that accurate invariants are obtained. To the best of our knowledge,
COSTA is the first system to perform fully automatic resource analysis of object-
oriented bytecode and we believe that COSTA opens the door to the application
of resource usage analysis in the context of general purpose applications written
in mainstream programming languages.

Though the efficiency and robustness of the system can be considerably im-
proved, COSTA can already deal with a relatively large class of JBC programs,
and gives reasonable results in terms of precision and efficiency for different

26



cost models: the number of executed bytecode instructions, heap consumption,
and number of calls to user-specified methods. We plan to distribute the system
as free software soon. Currently, it can be tried out through a web interface
available from the COSTA web site: http://costa.ls.fi.upm.es.

The system can deal with most features of JBC. However, non-sequential
code, dynamic class loading and reflection are not supported. Java API methods
used by programs are analyzed much in the same way as user code, since their
bytecode is available to the analyzer. As for native code, i.e., methods not imple-
mented in Java, calls to native methods are shown in upper bounds as symbolic
constants, since the code for those methods is not written in Java and COSTA
cannot analyze them. This could be further improved by providing assertions
which describe the cost of the native method for the different cost models and
(optionally) a safe approximation of their input-output behavior, but it is not
supported.

In addition to the web interface, COSTA has a command-line interface and an
Eclipse plugin which make interaction with the analyzer quite straightforward,
even during program development. The different interfaces allow customizing
the behaviour of COSTA by modifying the value of several options, including:

1. whether the code of Java API classes should also be analyzed or not;
2. whether auxiliary analyses (sign, nullity, slicing, constant propagation) should

be included, thus possibly improving both precision and performance;
3. whether input-output size relations have to be computed (Section 3.3);
4. if exceptions, either explicitly thrown in the code or resulting from semantic

violations, have to be taken into account;
5. which cost model has to be considered.

Also, although not discussed in this paper, COSTA also performs termination
analysis of Java bytecode programs (see [3]). When COSTA fails to find an upper
bound for a program, sometimes it may be useful to try and find out whether the
program is guaranteed to terminate. Maybe COSTA fails because the program
contains a bug and loops unexpectedly with a non-zero cost associated to each
iteration of the loop. In that case, there exist no upper bound for the program
and there is no way that COSTA can find an upper bound. Although COSTA
results are safe, they are obviously incomplete, since finding an upper bound
is an undecidable problem. This means that there are programs for which it is
possible to find an upper bound, but COSTA fails to find one.

As regards future work, there are plenty of ways in which both the theoretical
foundations and the practical implementation can be improved in order to handle
a larger class of programs, and obtain improvements both in terms of efficiency
and accuracy. On the foundations side, progress in the area of object-oriented
languages of any of the analyses used by the system will be potentially applicable
to COSTA. For example, one of the most challenging problems is to account
for loops and recursion where the number of iterations depends on numeric
fields. Here, an approach working in all cases might not be practical; however,
heuristics may allow us to account for special, simple but quite common cases
which can significantly enlarge the class of analyzable programs. A first step in
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this direction, in the context of termination analysis, has been taken in [4]. On
the implementation side, currently, COSTA handles bytecode programs for Java
SE 1.4.2 13 and Java ME. The reason for this is that Java SE 1.4.2 13 is the
version of Java taken as starting point for Java ME and, in particular, for MIDP.
The latter is the profile used by mobile phone applications, i.e., midlets, which
are the main target in the MOBIUS project. However, there is no fundamental
reason for not supporting more recent versions of Java and we plan to extend
COSTA to also handle Java 5 and 6 soon.
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