Abstract
In this paper we describe a model for navigation of an autonomous agent in which localization, path planning, and locomotion is performed in a qualitative manner instead of relying on exact coordinates. Our approach is grounded in a decomposition of navigable space based on a novel model of visibility and occlusion relations between extended objects for agents with very limited sensor abilities. A graph representation reflecting the adjacency between the regions of the decomposition is used as a topological map of the environment. The visibility-based representation can be constructed autonomously by the agent and navigation can be performed by simple reactive navigation behaviors. Moreover, the representation is well-qualified to be shared between multiple agents.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Montello, D.: Navigation. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visuospatial Thinking, pp. 257–294 (2005)
Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, San Francisco (2002)
Kuipers, B.: The Spatial Semantic Hierarchy. Artificial Intelligence (119), 191–233 (2000)
Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5, 111–125 (1998)
Remolina, E., Kuipers, B.: Towards a general theory of topological maps. Artificial Intelligence 152(1), 47–104 (2004)
Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Reese, H.W. (ed.) Advances in Child Development and Behavior, vol. 10, pp. 9–55. Academic Press, London (1975)
Tversky, B.: Distortions in cognitive maps. Geoforum 23, 131–138 (1992)
Denis, M.: The description of routes: A cognitive approach to the production of spatial discourse. Cahiers Psychologie Cognitive 16(4), 409–458 (1997)
Sorrows, M.E., Hirtle, S.C.: The nature of landmarks for real and electronic spaces. In: Freksa, C., Mark, D.M. (eds.) Spatial Information Theory. Cognitive and Computational Foundations of Geopraphic Information Science (COSIT), Berlin, August 1999. Lecture Notes on Computer Science, vol. 1661, pp. 37–50. Springer, Heidelberg (1999)
Levitt, T.S., Lawton, D.T.: Qualitative navigation for mobile robots. Artificial Intelligence 44, 305–361 (1990)
Schlieder, C.: Representing visible locations for qualitative navigation. In: Carreté, N.P., Singh, M.G. (eds.) Qualitative Reasoning and Decision Technologies, pp. 523–532 (1993)
Wagner, T., Visser, U., Herzog, O.: Egocentric qualitative spatial knowledge representation for physical robots. Robotics and Autonomous Systems 49, 25–42 (2004)
Tarquini, F., De Felice, G., Fogliaroni, P., Clementini, E.: A qualitative model for visibility relations. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667, pp. 510–513. Springer, Heidelberg (2007)
Galton, A.: Lines of sight. In: Keane, M., Cunningham, P., Brady, M., Byrne, R. (eds.) AI and Cognitive Science 1994, Proceedings of the Seventh Annual Conference, September 8-9, 1994, Trinity College Dublin, pp. 103–113 (1994)
Köhler, C.: The occlusion calculus. In: Proc. Workshop on Cognitive Vision (2002)
Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR 1992), pp. 165–176. Morgan Kaufmann, San Mateo (1992)
Billen, R., Clementini, E.: A model for ternary projective relations between regions. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 310–328. Springer, Heidelberg (2004)
Clementini, E., Billen, R.: Modeling and computing ternary projective relations between regions. IEEE Transactions on Knowledge and Data Engineering (2006)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)
Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)
Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 54–68. Springer, Heidelberg (1993)
Scivos, A., Nebel, B.: The finest of its class: The practical natural point-based ternary calculus \(\mathcal{LR}\) for qualitative spatial reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS, vol. 3343, pp. 283–303. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fogliaroni, P., Wallgrün, J.O., Clementini, E., Tarquini, F., Wolter, D. (2009). A Qualitative Approach to Localization and Navigation Based on Visibility Information. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds) Spatial Information Theory. COSIT 2009. Lecture Notes in Computer Science, vol 5756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03832-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-03832-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03831-0
Online ISBN: 978-3-642-03832-7
eBook Packages: Computer ScienceComputer Science (R0)