Skip to main content

Exploiting Qualitative Spatial Constraints for Multi-hypothesis Topological Map Learning

  • Conference paper
Spatial Information Theory (COSIT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5756))

Included in the following conference series:

Abstract

Topological maps are graph-based representations of space and have been considered as an alternative to metric representations in the context of robot navigation. In this work, we seek to improve on the lack of robustness of current topological mapping systems against ambiguity in the available information about the environment. For this purpose, we develop a topological mapping system that tracks multiple graph hypotheses simultaneously. The feasibility of the overall approach depends on a reduction of the search space by exploiting spatial constraints. We here consider qualitative direction information and the assumption that the map has to be planar. Qualitative spatial reasoning techniques are used to check the satisfiability of individual hypotheses. We evaluate the effects of absolute and relative direction information using relations from two different qualitative spatial calculi and combine the approach with a topological mapping system based on Voronoi graphs realized on a real robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  2. Kuipers, B.: The Spatial Semantic Hierarchy. Artificial Intelligence (119), 191–233 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Remolina, E., Kuipers, B.: Towards a general theory of topological maps. Artificial Intelligence 152(1), 47–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Werner, S., Krieg-Brückner, B., Herrmann, T.: Modelling navigational knowledge by route graphs. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS, vol. 1849, pp. 295–316. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph construction. IEEE Transactions on Robotics and Automation 7(6), 859–865 (1991)

    Article  Google Scholar 

  6. Dudek, G., Freedman, P., Hadjres, S.: Using multiple models for environmental mapping. Journal of Robotic Systems 13(8), 539–559 (1996)

    Article  MATH  Google Scholar 

  7. Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., Savelli, F.: Local metrical and global topological maps in the hybrid Spatial Semantic Hierarchy. In: Proceedings IEEE International Conference on Robotics and Automation 2004 (ICRA 2004), pp. 4845–4851 (2004)

    Google Scholar 

  8. Moratz, R., Nebel, B., Freksa, C.: Qualitative spatial reasoning about relative position: The tradeoff between strong formal properties and successful reasoning about route graphs. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS, vol. 2685, pp. 385–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Moratz, R., Wallgrün, J.O.: Spatial reasoning about relative orientation and distance for robot exploration. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 61–74. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Savelli, F., Kuipers, B.: Loop-closing and planarity in topological map-building. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), pp. 1511–1517 (2004)

    Google Scholar 

  11. Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 9, 23–44 (1998)

    Article  Google Scholar 

  12. Moratz, R.: Representing relative direction as binary relation of oriented points. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), August 2006, pp. 407–411 (2006)

    Google Scholar 

  13. Wallgrün, J.O.: Autonomous construction of hierarchical voronoi-based route graph representations. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS, vol. 3343, pp. 413–433. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Hopcroft, J., Tarjan, R.: Efficient planarity testing. Journal of the ACM 21(4), 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative spatial representation and reasoning in the sparQ-toolbox. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2007. LNCS, vol. 4387, pp. 39–58. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Science 7(2), 95–132 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Choset, H., Walker, S., Eiamsa-Ard, K., Burdick, J.: Sensor-based exploration: Incremental construction of the Hierarchical Generalized Voronoi Graph. The International Journal of Robotics Research 19(2), 126–148 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wallgrün, J.O. (2009). Exploiting Qualitative Spatial Constraints for Multi-hypothesis Topological Map Learning. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds) Spatial Information Theory. COSIT 2009. Lecture Notes in Computer Science, vol 5756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03832-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03832-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03831-0

  • Online ISBN: 978-3-642-03832-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics