Skip to main content

Quantitative Pathway Logic for Computational Biology

  • Conference paper
Computational Methods in Systems Biology (CMSB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5688))

Included in the following conference series:

Abstract

This paper presents an extension of Pathway Logic, called Quantitative Pathway Logic (QPL), which allows one to reason about quantitative aspects of biological processes, such as element concentrations and reactions kinetics. Besides, it supports the modeling of inhibitors, that is, chemicals which may block a given reaction whenever their concentration exceeds a certain threshold. QPL models can be specified and directly simulated using rewriting logic or can be translated into Discrete Functional Petri Nets (DFPN) which are a subclass of Hybrid Functional Petri Nets in which only discrete transitions are allowed. Under some constraints over the anonymous variables appearing in the QPL models, the transformation between the two computational models is shown to preserve computations. By using the DFPN representation our models can be graphically visualized and simulated by means of well known tools (e.g. Cell Illustrator); moreover standard Petri net analyses (e.g. topological analysis, forward/backward reachability, etc.) may be performed on the net model. An executable framework for QPL and for the translation of QPL models into DFPNs has been implemented using the rewriting-based language Maude. We have tested this system on several examples.

This work has been partially supported by the Italian MUR under grant RBIN04M8S8, FIRB project, Internationalization 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate, A., Bai, Y., Sznajder, N., Talcott, C., Tiwari, A.: Quantitative and Probabilistic Modeling in Pathway Logic. In: 7th IEEE International Conference on Bioinformatics and BioEngineering, pp. 922–929. IEEE Xplore, Los Alamitos (2007)

    Google Scholar 

  2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs with well quasi-ordered domains. Information and Computation 160(1-2), 109–127 (2000)

    Article  Google Scholar 

  3. Baggi, M., Ballis, D., Falaschi, M.: Applications to Systems Biology of Quantitative Pathway Logic. Technical report (2009), http://users.dimi.uniud.it/~michele.baggi/qpl/BBF09tr.pdf

  4. Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. Journal of Discrete Algorithms 6(2), 165–177 (2008)

    Article  Google Scholar 

  5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude LTL model checker and its implementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 230–234. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Eyre, T.A., et al.: The HUGO Gene Nomenclature Database, 2006 updates. Nucleic Acids Research 34(Database issue), 319–321 (2006)

    Article  Google Scholar 

  8. Gauges, R., Rost, U., Sahle, S., Wegner, K.: A model diagram layout extension for SBML. Bioinformatics 22(15), 1879–1885 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Genrich, H.J., Küffne, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. International Journal on Software Tools for Technology Transfer 3(4), 394–404 (2001)

    Google Scholar 

  10. Gilbert, D., Heiner, M., Lehrack, S.: A Unifying Framework for Modelling and Analysing Biochemical Pathways Using Petri Nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F.: The CellML Model Repository. Bioinformatics 24(18), 1367–2123 (2008)

    Article  Google Scholar 

  12. Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: A versatile petri net based architecture for modeling and simulation of complex biological processes. Genome Informatics 15(1), 180–197 (2004)

    CAS  PubMed  Google Scholar 

  13. Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic Object Net: A platform for modelling and simulating biopathways. Applied Bioinformatics 2, 181–184 (2004)

    Google Scholar 

  14. Martí-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theoretical Computer Science 285(2), 121–154 (2002)

    Article  Google Scholar 

  15. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper Saddle River (1967)

    Google Scholar 

  16. Murata, T.: Petri Nets: Properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  17. Nagasaki, M., Saito, A., Li, C., Jeong, E., Miyano, S.: Systematic reconstruction of TRANSPATH data into Cell System Markup Language. BMC Systems Biology 2(1) (2008)

    Google Scholar 

  18. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in rewriting logic. Theoretical Computer Science 285(2), 359–405 (2002)

    Article  Google Scholar 

  19. Reinhardt, K.: Reachability in Petri Nets with Inhibitor Arcs. Electronic Notes in Theoretical Computer Science 223, 239–264 (2008)

    Article  Google Scholar 

  20. Talcott, C.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Talcott, C., Dill, D.L.: Multiple representations of biological processes. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 221–245. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. The_uniprot_consortium. The Universal Protein Resource (UniProt). Nucleic Acids Research 35(Database issue) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baggi, M., Ballis, D., Falaschi, M. (2009). Quantitative Pathway Logic for Computational Biology. In: Degano, P., Gorrieri, R. (eds) Computational Methods in Systems Biology. CMSB 2009. Lecture Notes in Computer Science(), vol 5688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03845-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03845-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03844-0

  • Online ISBN: 978-3-642-03845-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics