Skip to main content

A Prize-Collecting Steiner Tree Approach for Transduction Network Inference

  • Conference paper
Computational Methods in Systems Biology (CMSB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5688))

Included in the following conference series:

  • 836 Accesses

Abstract

Into the cell, information from the environment is mainly propagated via signaling pathways which form a transduction network. Here we propose a new algorithm to infer transduction networks from heterogeneous data, using both the protein interaction network and expression datasets. We formulate the inference problem as an optimization task, and develop a message-passing, probabilistic and distributed formalism to solve it. We apply our algorithm to the pheromone response in the baker’s yeast S. cerevisiae. We are able to find the backbone of the known structure of the MAPK cascade of pheromone response, validating our algorithm. More importantly, we make biological predictions about some proteins whose role could be at the interface between pheromone response and other cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Elston, T.C.: Probing pathways periodically. Sci. Signal 1(42) (2008); pe47

    Google Scholar 

  2. Dohlman, H.G., Slessareva, J.E.: Pheromone signaling pathways in yeast. Sci. STKE 2006(364) (December 2006); cm6

    Google Scholar 

  3. Luttrel, L.: Transmembrane signalling by g protein couple receptors. Methods Mol. Biol. 332, 3–49 (2006)

    Google Scholar 

  4. Chen, R.E., Thorner, J.: Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochem. Biophys. Acta 1773(8), 1311–1340 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thattai, M., van Oudenaarden, A.: Attenuation of noise in ultrasensitive signaling cascades. Biophys. J. 82(6), 2943–2950 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kholodenko, B.N.: Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7(3), 165–176 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ventura, A.C., Sepulchre, J.A., Merajver, S.D.: A hidden feedback in signaling cascades is revealed. PLoS Comput. Biol. 4(3), e1000041 (2008)

    Article  Google Scholar 

  8. Locasale, J.W., Chakraborty, A.K.: Regulation of signal duration and the statistical dynamics of kinase activation by scaffold proteins. PLoS Comput. Biol. 4(6), e1000099 (2008)

    Article  Google Scholar 

  9. Bashor, C.J., Helman, N.C., Yan, S., Lim, W.A.: Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319(5869), 1539–1543 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13(2), 133–144 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. White, A., Ma’yan, A.: Connecting seed lists of mammalian proteins using steiner trees. Nature Precedings (2008)

    Google Scholar 

  12. Scott, M.S., Perkins, T., Bunnell, S., Pepin, F., Thomas, D.Y., Hallett, M.: Identifying regulatory subnetworks for a set of genes. Mol. Cell Proteomics 4(5), 683–692 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, X.M., Wang, R.S., Chen, L., Aihara, K.: Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res. 36(9), e48 (2008)

    Google Scholar 

  14. Bayati, M., Borgs, C., Braunstein, A., Chayes, J., Ramezanpour, A., Zecchina, R.: Statistical mechanics of steiner trees. Phys. Rev. Lett. 101(3), 037208 (2008)

    Article  CAS  Google Scholar 

  15. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)

    Article  PubMed  Google Scholar 

  16. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Chang, W.C., Li, C.W., Chen, B.S.: Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics 6, 44 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steffen, M., Petti, A., Aach, J., D’haeseleer, P., Church, G.: Automated modelling of signal transduction networks. BMC Bioinformatics 3, 34 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson, D., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and practice. In: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 760–769 (2000)

    Google Scholar 

  20. Lucena, A., Resende, M.G.C.: Strong lower bounds for the prize collecting Steiner problem in graphs. Discrete Applied Mathematics 141(1-3), 277–294 (2004)

    Article  Google Scholar 

  21. Bayati, M., Braunstein, A., Zecchina, R.: A rigorous analysis of the cavity equations for the minimum spanning tree. Journal of Mathematical Physics 49(12), 125206 (2008)

    Article  Google Scholar 

  22. Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D.: DIP: the database of interacting proteins. Nucleic Acids Res. 28(1), 289–291 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Güldener, U., Oesterheld, M., Pagel, P., Ruepp, A., Mewes, H.W., Stümpflen: Mpact: the MIPS protein interaction resource on yeast. Nucleic Acids Res. 34(Database issue), D436–D441 (2006)

    Article  Google Scholar 

  24. Bader, J.S., Chaudhuri, A., Rothberg, J.M., Chant, J.: Gaining confidence in high-throughput protein interaction networks. Nat. Biotechnol. 22(1), 78–85 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Suthram, S., Shlomi, T., Ruppin, E., Sharan, R., Ideker, T.: A direct comparison of protein interaction confidence assignment schemes. BMC Bioinformatics 7, 360 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roberts, C.J., Nelson, B., Marton, M.J., Stoughton, R., Meyer, M.R., Bennett, H.A., He, Y.D., Dai, H., Walker, W.L., Hughes, T.R., Tyers, M., Boone, C., Friend, S.H.: Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287(5454), 873–880 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)

    Google Scholar 

  28. Heiman, M.G., Walter, P.: Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J. Cell Biol. 151(3), 719–730 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguilar, P.S., Engel, A., Walter, P.: The plasma membrane proteins prm1 and fig1 ascertain fidelity of membrane fusion during yeast mating. Mol. Biol. Cell 18(2), 547–556 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Despons, L., Wirth, B., Louis, V.L., Potier, S., Souciet, J.L.: An evolutionary scenario for one of the largest yeast gene families. Trends Genet. 22(1), 10–15 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Weigt, M., White, R.A., Szurmant, H., Hoch, J.A., Hwa, T.: Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. U S A 106(1), 67–72 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bailly-Bechet, M., Braunstein, A., Zecchina, R. (2009). A Prize-Collecting Steiner Tree Approach for Transduction Network Inference. In: Degano, P., Gorrieri, R. (eds) Computational Methods in Systems Biology. CMSB 2009. Lecture Notes in Computer Science(), vol 5688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03845-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03845-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03844-0

  • Online ISBN: 978-3-642-03845-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics